Smooth Dynamics, Dimension Theory, Geodesic Flows, and Mathematical Biology

光滑动力学、维度理论、测地线流和数学生物学

基本信息

  • 批准号:
    9704913
  • 负责人:
  • 金额:
    $ 5.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-01 至 1999-07-31
  • 项目状态:
    已结题

项目摘要

Invariant sets of dynamical systems are not generally self-similar in the strict sense. However, in work with others, the PI has shown that in some important cases, these sets can be decomposed into subsets each possessing a type of scaling symmetry. Sets which admit such structure are called multifractals (MF). This proposal involves the continuing investigation of the fine structure of these multifractals and an attempt to use the MF analysis to give new insights into dynamical systems and possibly yield a new (physical) classification of dynamical systems. In addition, the proposed work involves various problems in dimension theory which arise in mathematical biology as well as research on the relations between non-negative curvature and complicated dynamics of the geodesic flow. Regarding the latter, the (in)famous (xy)^2 Hamiltonian system, a model for a classical Yang-Mills field, which is orbit equivalent to a geodesic flow on a non-negative curved surface will be studied. Many physical and biological systems (including turbulent fluids, root systems of plants, stressed pieces of metal, NMR images of the brain, clouds, and galaxies in the universe) seem to possess some type of complicated fractal structure. Mathematically such objects are called multifractals. In previous work, the principal investigator presented a rigorous mathematical foundation for the study of some important classes of multifractals. The plan is to extend this work to larger classes of systems and to use this mathematical analysis to help understand the underlying physical or biological systems. The PI is particularly interested in applications to plant biology. In a different area, a large class of physical systems which are central to celestial mechanics and plasma physics can be studied by first transforming them to a ''geometric system'' called a geodesic flow and then studying the geodesic flow. In previous work, the PI showed that a large class of these flows, which some thought were easily understood and mathematically and physically boring, have extremely complicated behavior and are in fact chaotic. The investigations into some specific examples including an example from gauge field dynamics, which is one of the central theoretical problems in particle physics will be continued.
动力系统的不变集一般不是严格意义上的自相似。然而,在与其他人的合作中,PI已经表明,在某些重要的情况下,这些集合可以被分解为每个子集都具有一种缩放对称性。允许这种结构的集合被称为多重分形(MF)。 这个建议涉及到这些多重分形的精细结构的持续调查,并试图使用MF分析给动力系统的新见解,并可能产生一个新的(物理)分类的动力系统。 此外,所提出的工作涉及的各种问题,在维数理论中出现的数学生物学以及非负曲率和复杂的动力学的测地线流之间的关系的研究。关于后者,我们将研究著名的(xy)^2哈密顿系统,一个经典杨-米尔斯场的模型,它的轨道等价于非负曲面上的测地线流。 许多物理和生物系统(包括湍流流体、植物根系、受压金属片、大脑的核磁共振图像、云和宇宙中的星系)似乎都具有某种复杂的分形结构。 在数学上,这样的物体被称为多重分形。在以前的工作中,主要研究者提出了一个严格的数学基础,研究一些重要的多重分形类。计划是将这项工作扩展到更大的系统类别,并使用这种数学分析来帮助理解潜在的物理或生物系统。 PI对植物生物学的应用特别感兴趣。在另一个领域,对天体力学和等离子体物理学至关重要的一大类物理系统可以通过首先将它们转换为称为测地线流的“几何系统”,然后研究测地线流来研究。在以前的工作中,PI表明,这些流中的一大类,有些人认为很容易理解,数学和物理上很无聊,具有极其复杂的行为,实际上是混沌的。 对一些具体的例子,包括规范场动力学的例子,这是粒子物理学的中心理论问题之一的调查将继续进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Howard Weiss其他文献

Some remarks on the dynamics of the Mixmaster universe
Endometrial Cyst of the Pancreas
  • DOI:
    10.1016/s0016-5085(84)80177-8
  • 发表时间:
    1984-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alberto M. Marchevsky;Maurice J. Zimmerman;Arthur H. Aufses;Howard Weiss
  • 通讯作者:
    Howard Weiss
Free Energy as a Dynamical Invariant (or Can You Hear the Shape of a Potential?)
Chondroectodermal dysplasia: Report of a case and review of the literature
  • DOI:
    10.1016/s0022-3476(55)80280-6
  • 发表时间:
    1955-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Howard Weiss
  • 通讯作者:
    Howard Weiss
How Smooth is Your Wavelet? Wavelet Regularity via Thermodynamic Formalism

Howard Weiss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Howard Weiss', 18)}}的其他基金

Applications of Dynamical Systems to Statistical Physics, Geometry, and Population Biology/Demography
动力系统在统计物理、几何和人口生物学/人口统计学中的应用
  • 批准号:
    0649363
  • 财政年份:
    2006
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Applications of Dynamical Systems to Statistical Physics, Geometry, and Population Biology/Demography
动力系统在统计物理、几何和人口生物学/人口统计学中的应用
  • 批准号:
    0355180
  • 财政年份:
    2004
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Symbolic Dynamics, Smooth Dynamics, and Applications
符号动力学、平滑动力学及其应用
  • 批准号:
    0100252
  • 财政年份:
    2001
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Smooth Dynamical Systems and Dimension Theory
数学科学:光滑动力系统和维度理论
  • 批准号:
    9403724
  • 财政年份:
    1994
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
U.S.-Brazil Science & Technology Initiative: Geodesic Flow and Solution of the Wave Equation on Compact Riemannian Manifolds
美国-巴西科学
  • 批准号:
    9104217
  • 财政年份:
    1991
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Boston Harbor Marine Research Program for Teachers
波士顿港教师海洋研究计划
  • 批准号:
    9153768
  • 财政年份:
    1991
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Undersea Research Program for Teachers
教师海底研究计划
  • 批准号:
    8954568
  • 财政年份:
    1989
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    8905720
  • 财政年份:
    1989
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Fellowship Award
Undersea Research Program for Teachers
教师海底研究计划
  • 批准号:
    8850518
  • 财政年份:
    1988
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Transcendental Dynamics: Hausdorff Dimension and Itineraries
超越动力学:豪斯多夫维度和行程
  • 批准号:
    2885593
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Studentship
CAREER: How Diffusion, Dimension, Geometry, and Redundancy Affect Cellular Dynamics
职业:扩散、维度、几何和冗余如何影响细胞动力学
  • 批准号:
    1944574
  • 财政年份:
    2020
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Construction of new phase-parameter space correspondence for complex dynamics in dimension two
二维复杂动力学新相参空间对应的构建
  • 批准号:
    20H01809
  • 财政年份:
    2020
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
HDHL DIMENSION: Dietary induced methylome and transcriptome dynamics assessing nutrition impacts on cardiovascular and metabolic health
HDHL 维度:饮食诱导的甲基化组和转录组动态评估营养对心血管和代谢健康的影响
  • 批准号:
    BB/S020845/1
  • 财政年份:
    2019
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Research Grant
Analytic Low Dimensional Dynamics: From Dimension One to Two
解析低维动力学:从一维到二维
  • 批准号:
    1600519
  • 财政年份:
    2016
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Novel Kernel Methods for Data Analysis in Dynamical Systems: Applications to Dimension Reduction and Prediction in Atmospheric and Oceanic Dynamics
动力系统数据分析的新核方法:在大气和海洋动力学中的降维和预测应用
  • 批准号:
    1521775
  • 财政年份:
    2015
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Complex Dynamics in Higher Dimension
高维复杂动力学
  • 批准号:
    1208036
  • 财政年份:
    2012
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Complex Dynamics in Higher Dimension
高维复杂动力学
  • 批准号:
    0904951
  • 财政年份:
    2009
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Si quasi-nucleation with a nanometer dimension by soft X-ray irradiation onto amorphous Si and dynamics of low-temperature crystallization by excimer laser irradiation following the soft X-ray irradiation
通过软 X 射线照射非晶硅实现纳米尺寸的 Si 准成核,以及软 X 射线照射后通过准分子激光照射进行低温结晶动力学
  • 批准号:
    19560667
  • 财政年份:
    2007
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complex Dynamics in Higher Dimension
高维复杂动力学
  • 批准号:
    0601965
  • 财政年份:
    2006
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了