Interfacial Microrheology of Protein Layers using Magnetic Nanowire Probes

使用磁性纳米线探针进行蛋白质层的界面微流变学

基本信息

  • 批准号:
    0651666
  • 负责人:
  • 金额:
    $ 20.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-04-15 至 2010-03-31
  • 项目状态:
    已结题

项目摘要

Leheny / Johns Hopkins / 0651666The tendency for proteins to adsorb at air-water or oil-water interfaces and to create stiffinterfacial layers is vital to many current and developing technologies, particularly those related to the food, biomedical, and pharmaceutical industries. Further, the process of protein-layer formation provides a unique perspective on issues of protein denaturation, protein-protein interactions, and the gel transition. This proposal describes experiments to apply a new, high sensitivity approach to characterizing the interfacial shear rheology of protein layers by employing magnetic nanowires confined at the interface as active microrheology probes.Intellectual Merit: A key difference between proteins adsorbed at interfaces and conventional small-molecule surfactants is the propensity of the proteins to form layers that are strongly viscoelastic. In many circumstances, this mechanical behavior can lead to superior properties, such as in stabilizing emulsions and foams. Consequently, knowledge of the rheological properties of protein layers is crucial both for understanding fundamental aspects of their formation and stability as well as for adopting them for technological application. Based on geometric considerations, the proposed microrheology approach using wire-shaped probes is naturally suited for measuring the shear rheology of nanometer-scale fluid films, and the nanowires should be significantly more sensitive than existing interfacial shear rheology techniques. The basis of the approach involves characterizing the drag experienced by nanowires confined to the air-water interface at which protein layers form as the wires are rotated by precise magnetic torques. Recent theory has predicted fundamental changes to the hydrodynamic behavior of an anisotropic object, such as a wire-shaped particle, when it is confined to such a thin film. Clarifying experimentally the validity of these predictions and their range of applicability would have far-reaching implications. Such clarification will also be necessary for a proper quantitative interpretation of the proposed interfacial rheology experiments on protein layers. The magnetic nanowires are an ideal system to investigate these theoretical ideas, and the project will include experiments to test the predictions. With the rotational drag on nanowires in films understood, the approach will then be applied to interfacial shear rheology studies of two protein layer systems (i) lysozyme solutions at low concentration for which layer formation is characterized by an extended induction period and (ii) films formed from solutions of lactoglobulin and small molecule surfactants for which the mechanical properties of the protein layer are highly sensitive to the presence of the surfactant. These systems are selected for thecompelling scientific problems they present and for the opportunities to uncover significant new phenomena through the proposed experimental approach. However, an additional objective of the proposed experiments will be to establish more generally the technique of microrheology with magnetic nanowires as an important tool for studying the mechanical properties of interfacial systems.Broader Impacts: As part of this project, a female high school student will be recruited from the Women in Science and Engineering (WISE) Program, a Johns Hopkins outreach initiative, to participate in the research. The broader impacts of the project will also include research training and education for a graduate student and an undergraduate student. In addition, the work will provide potentially significant impact to both the research on and the technology based on interfacial proteins layers, particularly with regard to systems with mesoscale heterogeneity that cannot be accessed with current techniques and to materials for which small sample quantity is currently a limiting factor. Stiff interfacial layers are vital to many current and developing technologies, particularly those related to the food, biomedical, and pharmaceutical industries.
Leheny / Johns霍普金斯/0651666蛋白质吸附在空气-水或油-水界面并产生硬界面层的趋势对许多当前和发展中的技术至关重要,特别是那些与食品、生物医学和制药工业相关的技术。此外,蛋白质层形成的过程提供了一个独特的视角,蛋白质变性,蛋白质-蛋白质相互作用和凝胶转变的问题。该提案描述了实验应用一种新的,高灵敏度的方法来表征的界面剪切流变学的蛋白质层,通过采用磁性纳米线限制在界面作为主动microrheology probes.Intellectual优点:蛋白质吸附在界面和传统的小分子表面活性剂之间的一个关键区别是蛋白质的倾向,形成层,是强烈的粘弹性。在许多情况下,这种机械行为可以导致上级性能,例如在稳定乳液和泡沫方面。因此,了解蛋白质层的流变特性对于理解其形成和稳定性的基本方面以及将其用于技术应用都是至关重要的。基于几何的考虑,所提出的微流变学方法,使用线形探针自然适合于测量纳米级流体膜的剪切流变学,纳米线应该比现有的界面剪切流变学技术更敏感。该方法的基础涉及表征纳米线所经历的阻力,该纳米线被限制在空气-水界面处,当纳米线被精确的磁力矩旋转时,在该界面处形成蛋白质层。最近的理论已经预测了各向异性物体的流体动力学行为的根本变化,例如线状颗粒,当它被限制在这样的薄膜中时。通过实验澄清这些预测的有效性及其适用范围将产生深远的影响。这样的澄清也将是必要的一个适当的定量解释建议的界面流变学实验蛋白质层。磁性纳米线是研究这些理论想法的理想系统,该项目将包括测试预测的实验。了解了薄膜中纳米线的旋转阻力后,然后将该方法应用于两种蛋白质层系统的界面剪切流变学研究:(i)低浓度的溶菌酶溶液,其层形成的特征在于延长的诱导期,和(ii)由乳球蛋白和小分子表面活性剂的溶液形成的膜,的表面活性剂。选择这些系统是因为它们提出了复杂的科学问题,并有机会通过拟议的实验方法发现重大的新现象。然而,一个额外的目标,拟议的实验将是建立更普遍的技术与磁性纳米线作为一个重要的工具,用于研究界面system.Broader影响的机械性能:作为这个项目的一部分,一名女高中生将被招募从科学和工程(WISE)计划,约翰霍普金斯外展倡议,参加研究。该项目的更广泛影响还将包括研究生和本科生的研究培训和教育。此外,这项工作将提供潜在的重大影响的研究和技术的基础上的界面蛋白质层,特别是关于系统的中尺度异质性,不能用目前的技术和材料的小样本量目前是一个限制因素。刚性界面层对许多当前和发展中的技术至关重要,特别是那些与食品、生物医学和制药行业相关的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Leheny其他文献

Robert Leheny的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Leheny', 18)}}的其他基金

Dynamic coupling to the order and flows in active nematics and living liquid crystals
动态耦合到活性向列相和活性液晶中的有序和流动
  • 批准号:
    2104747
  • 财政年份:
    2021
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Continuing Grant
Uncovering the microscopic origins of nonlinear rheology in glassy nanocolloidal suspensions
揭示玻璃状纳米胶体悬浮液中非线性流变学的微观起源
  • 批准号:
    1804721
  • 财政年份:
    2018
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
Colloidal Dynamics in Fluids with Spatiotemporally Modulated Nematic Order
具有时空调制向列序的流体中的胶体动力学
  • 批准号:
    1610875
  • 财政年份:
    2016
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
Connecting nanoscale structure and dynamics to rheology and flow of glassy nanocolloidal suspensions
将纳米级结构和动力学与玻璃状纳米胶体悬浮液的流变学和流动联系起来
  • 批准号:
    1336166
  • 财政年份:
    2013
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
Dynamics, Transport, and Ordering of Inclusions in Liquid Crystals
液晶中夹杂物的动力学、输运和有序化
  • 批准号:
    1207117
  • 财政年份:
    2012
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Continuing Grant
Colloidal Mobility in Surfactant Films and its Application of the Shear Rheology of Protein Layers
表面活性剂膜中的胶体迁移率及其在蛋白质层剪切流变学中的应用
  • 批准号:
    1033985
  • 财政年份:
    2010
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
Magnetic Probes of Elastic Energy, Dynamics, Interactions, and Shape Transitions of Anisotropic Colloids in Liquid Crystals
液晶中各向异性胶体的弹性能、动力学、相互作用和形状转变的磁探针
  • 批准号:
    0706021
  • 财政年份:
    2008
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Continuing Grant
Acquisition of Particle Tracking Instrumentation for Soft Matter and Biomaterials Research and Education
采购用于软物质和生物材料研究和教育的粒子跟踪仪器
  • 批准号:
    0315493
  • 财政年份:
    2003
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
CAREER: Structure and Dynamics of Disordered and Out-of-Equilibrium Systems
职业:无序和非平衡系统的结构和动力学
  • 批准号:
    0134377
  • 财政年份:
    2002
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Continuing Grant

相似海外基金

Microrheology of Dense DNA solutions
致密 DNA 溶液的微观流变学
  • 批准号:
    2782482
  • 财政年份:
    2022
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Studentship
Fluorescence correlation spectroscopy (FCS) setup for short-time diffusion and microrheology studies in soft and biological materials
用于软材料和生物材料的短时扩散和微流变学研究的荧光相关光谱 (FCS) 设置
  • 批准号:
    RTI-2022-00700
  • 财政年份:
    2021
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Research Tools and Instruments
Microrheology of DNA Origami
DNA折纸的微观流变学
  • 批准号:
    2513951
  • 财政年份:
    2020
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Studentship
metabolism-dependent microrheology of glass-forming cytoplasm
玻璃形成细胞质的代谢依赖性微流变学
  • 批准号:
    18H01189
  • 财政年份:
    2018
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Microrheology of microscopically phase separated hydrogels
微观相分离水凝胶的微观流变学
  • 批准号:
    1961803
  • 财政年份:
    2017
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Studentship
Stress Formation and Relaxation in colloidal Dispersions: Transient, Nonlinear Microrheology
胶体分散体中应力的形成和松弛:瞬态、非线性微流变学
  • 批准号:
    1801715
  • 财政年份:
    2017
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
Orientational microrheology (B05)
定向微流变学(B05)
  • 批准号:
    313434079
  • 财政年份:
    2016
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Collaborative Research Centres
Stress Formation and Relaxation in colloidal Dispersions: Transient, Nonlinear Microrheology
胶体分散体中应力的形成和松弛:瞬态、非线性微流变学
  • 批准号:
    1605836
  • 财政年份:
    2016
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
Feedback microrheology in living cells
活细胞中的反馈微流变学
  • 批准号:
    15H03710
  • 财政年份:
    2015
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Microrheology, diffusion, and flow in complex fluids
复杂流体中的微观流变学、扩散和流动
  • 批准号:
    170848-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了