Dynamical Systems on Non-compact Spaces

非紧空间动力系统

基本信息

  • 批准号:
    0652966
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

This project deals with ergodic theory and dynamical systems. The research will concentrate on three fundamental problems associated with various aspects of noncompactness in dynamical systems. The first problem considers measure rigidity phenomena for horocycle flows on infinite volume hyperbolic surfaces. The existing theory treats finite invariant measures, whereas the project involves a program to study the infinite, but locally finite, case. The second and third problems are concerned with the thermodynamic formalism for maps with infinite Markov partitions and for nonuniformly hyperbolic surface diffeomorphisms. Building on previous work of the principal investigator and others, the project will investigate an analogy between certain phenomena associated with such systems and critical phenomena in statistical physics (namely, phase transitions). The principal investigator will pursue a detailed program for utilizing this analogy to explore in a systematic way the ergodic theoretic effects of noncompactness or nonuniform hyperbolicity. A dynamical system is a model that describes a system (think of a physical system) that can be in one of many possible states, together with a law that prescribes how the state of the system evolves in time. Such models are used frequently in mathematics, physics, biology, and engineering. Most of the mathematical research in dynamical systems hitherto has focused on systems whose collections of possible states are "small" in an appropriate sense (the precise mathematical term is "compact"). In contrast, this project studies dynamical systems with noncompact collections of states. It focuses on various dynamical phenomena that can appear only in the noncompact setting, most notably a new type of rigidity on the level of infinite invariant measures, as well as a certain collection of phenomena similar to critical phenomena that one encounters in physics. There are numerous potential applications of these ideas to other areas of mathematics, including geometry and mathematical physics. In particular, it is hoped that the results of the research will shed light on the theory of phase transitions in statistical physics.
这个项目涉及遍历理论和动力系统。研究将集中在与动力系统中的非紧性的各个方面相关的三个基本问题。第一个问题考虑无限体积双曲曲面上的均圈流动的测度刚性现象。现有的理论对待有限不变的措施,而该项目涉及一个程序来研究无限的,但局部有限的情况下。第二和第三个问题是关于具有无穷马尔可夫划分的映射和非一致双曲曲面自同构的热力学形式。在主要研究者和其他人以前工作的基础上,该项目将研究与此类系统相关的某些现象与统计物理学中的临界现象(即相变)之间的类比。主要研究者将追求一个详细的计划,利用这个类比,以系统的方式探索非紧性或非均匀双曲性的遍历理论效应。动态系统是一个模型,它描述了一个系统(想想一个物理系统),它可以处于许多可能的状态之一,以及规定系统状态如何随时间演变的定律。这些模型经常在数学、物理、生物学和工程学中使用。迄今为止,大多数动力系统的数学研究都集中在可能状态的集合在适当意义上是“小”的系统(精确的数学术语是“紧凑”)。相反,这个项目研究具有非紧状态集合的动力系统。它专注于只能在非紧环境中出现的各种动力学现象,最值得注意的是无限不变测度水平上的一种新型刚性,以及类似于物理学中遇到的临界现象的某些现象。这些思想在数学的其他领域有许多潜在的应用,包括几何和数学物理。特别是,希望研究结果将阐明统计物理学中的相变理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Omri Sarig其他文献

Corrections to “Invariant measures and asymptotics for some skew products”, israel journal of mathematics, vol. 128, 2002, pp. 93–134
  • DOI:
    10.1007/bf02783433
  • 发表时间:
    2003-03-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Jon Aaronson;Hitoshi Nakada;Omri Sarig;Rita Solomyak
  • 通讯作者:
    Rita Solomyak

Omri Sarig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Omri Sarig', 18)}}的其他基金

Phase Transitions in Smooth Dynamical Systems
平滑动力系统中的相变
  • 批准号:
    0400687
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Non-Stationary Random Dynamical Systems and Applications
非平稳随机动力系统和应用
  • 批准号:
    2247966
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2306769
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Equilibrium States for Non-stationary Dynamical Systems
博士后奖学金:MPS-Ascend:非平稳动力系统的平衡态
  • 批准号:
    2316687
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
Invariant measures for non-autonomous dynamical systems.
非自主动力系统的不变测度。
  • 批准号:
    RGPIN-2020-06788
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
International Joint Research for the Construction of the Foundation of Critical Computational Systems as Non-Autonomous Dynamical Systems
作为非自主动力系统的关键计算系统基础构建的国际联合研究
  • 批准号:
    22KK0159
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Dynamical systems for non-invasive control of neural activity
用于非侵入性控制神经活动的动力系统
  • 批准号:
    DH-2022-00476
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Horizons
Investigation of non-uniformly hyperbolic dynamical systems: collaoborative research between numerics and theories
非均匀双曲动力系统的研究:数值与理论之间的合作研究
  • 批准号:
    21K03320
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Invariant measures for non-autonomous dynamical systems.
非自主动力系统的不变测度。
  • 批准号:
    RGPIN-2020-06788
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了