Concentration Phenomena in Diffusion and Cross-Diffusion Systems

扩散和交叉扩散系统中的集中现象

基本信息

  • 批准号:
    0400452
  • 负责人:
  • 金额:
    $ 18.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-01 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

Proposal DMS-0400452Title: Concentration phenomena in diffusion and cross-diffusion systemsPI: Wei-Ming Ni (University of Minnesota- Twin Cities)(I) Technical Description:Professor Ni plans to continue his research in understandingmathematically the effects of various diffusion-related mechanisms. Usingvariational approach and techniques in classical analysis, Professor Niand his collaborators have established the spike-layer steady states foran activator-inhibitor system in morphogenesis proposed by Gierer andMeinhardt based on the celebrated idea - diffusion-driven instability - ofTuring in 1952. The method exploits the gap between the diffusion ratesfor the two chemical substances, and stability results in one spacedimension have also been obtained. Very recently, progress has been madefor concentration phenomena on multi-dimensional subsets. However, thecomplete dynamics is still far from being fully understood. It has beennoted that the gap between the diffusion rates alone is insufficient tocreate patterns. Thus, the notion of "cross-diffusion," introduced bytheoretical biologists in 1979 in modeling segregation phenomena inpopulation dynamics, deserves systematic studies. Cross-diffusion systems,which have also been used in recent years to model singular phenomenaincluding dendritic growth of bacteria colonies, are both nonlinear andstrongly-coupled in highest order terms, thus are mathematically verychallenging. Professor Ni and his collaborators propose to study theeffects of cross-diffusion by first obtain necessary and sufficientconditions for cross-diffusion to help create patterns, and then toinvestigate their qualitative behavior as well as their stabilityproperties.(II) Non-technical Descriptions:Professor Ni plans to continue his research in understanding, in amathematically rigorous manner, the phenomena and effects of variousdiffusion-related mechanisms and hopefully thereby to have some impact inboth improving our ability in modeling more complicated and/or realisticphenomena in applied sciences, as well as in creating new and significantmathematics. In this proposal, from the viewpoint of pattern formation,Professor Ni intends to investigate the various "concentration phenomena"in diffusion and/or cross-diffusion systems. These, in particular, includeTuring patterns in chemical reactions (e.g. the CIMA reaction),Gierer-Meinhardt's activator-inhibitor systems in modeling theregeneration phenomena of hydra in morphogenesis, a nonlinear diffusionsystem modeling dendritic growth of bacteria colonies, and theLotka-Volterra competition systems with inter-specific populationpressures taken into considerations."
提案DMS-0400452题目:扩散和交叉扩散系统中的浓度现象PI:Wei-Ming Ni(明尼苏达大学双城分校)(I)技术说明:Ni教授计划继续他的研究,从数学上理解各种扩散相关机制的影响。在1952年Turing提出的扩散驱动不稳定性的基础上,倪教授和他的合作者利用经典分析中的变分方法和技巧,建立了Gierer和Meinhardt提出的形态发生中激活-抑制系统的尖峰层定态。该方法利用了两种化学物质扩散速率之间的差距,并且在一维空间中也得到了稳定的结果。最近,多维子集上的集中现象研究取得了进展。然而,完整的动力学仍然远远没有被完全理解。已经注意到,仅扩散速率之间的差距不足以形成图案。因此,1979年理论生物学家在模拟种群动态中的分离现象时引入的“交叉扩散”概念值得系统研究。交叉扩散系统是一类非线性的高阶强耦合系统,近年来也被用来模拟细菌菌落的树枝状生长等奇异现象,因此在数学上具有很大的挑战性.倪教授和他的合作者们建议研究交叉扩散的影响,首先获得交叉扩散的必要条件,以帮助创建模式,然后研究它们的定性行为以及它们的稳定性。(II)非技术性描述:倪教授计划继续他的研究,以数学严谨的方式理解各种扩散相关机制的现象和影响,并希望由此对提高我们在应用科学中模拟更复杂和/或现实现象的能力以及创造新的和重要的数学产生一定的影响。在这个提议中,倪教授打算从图案形成的角度来研究扩散和/或交叉扩散系统中的各种“集中现象“。这些,特别是,包括图灵模式的化学反应(如CIMA反应),Gierer-Meinhardt的激活剂-抑制剂系统在模拟再生现象的水螅在形态发生,一个非线性扩散系统模拟树突状生长的细菌菌落,和Lotka-Volterra竞争系统与种间populationpressure考虑在内。"

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei-Ming Ni其他文献

The uniqueness of indefinite nonlinear diffusion problem in populaton genetics
群体遗传学中不定非线性扩散问题的独特性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fang Li;Kimie Nakashima;Wei-Ming Ni;Fang Li and Kimie Nakashima;中島主恵
  • 通讯作者:
    中島主恵
Stability and uniqueness of multi-layered solutions
多层解决方案的稳定性和唯一性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fang Li;Kimie Nakashima;Wei-Ming Ni;Fang Li and Kimie Nakashima;中島主恵;Kimie Nakashima
  • 通讯作者:
    Kimie Nakashima
On the natural extensions of dynamics with a Siegel or Cremer point
关于具有西格尔或克里默点的动力学的自然延伸
  • DOI:
    10.1080/10236198.2012.681780
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linlin Su;Kimie Nakashima;Wei-Ming Ni;Kimie Nakashima;Kimie Nakashima;Kimie Nakashima;Kimie Nakashima;Kimie Nakashima;C. Cabrera and T. Kawahira
  • 通讯作者:
    C. Cabrera and T. Kawahira
Preface [Special issue dedicated to the late Professor Rou-Huai Wang on the occasion of his 90th birthday]
序言【纪念已故王柔怀教授九十岁生日特刊】
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.C. Chang;M.Y. Chi;Wei-Ming Ni;Z.Q.Wu
  • 通讯作者:
    Z.Q.Wu
非線形解析と可積分系の数理
可积系统的非线性分析和数学
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linlin Su;Kimie Nakashima;Wei-Ming Ni;Kimie Nakashima
  • 通讯作者:
    Kimie Nakashima

Wei-Ming Ni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei-Ming Ni', 18)}}的其他基金

Diffusion, Directed Movement, Spatial and Temporal Heterogeneity in Population Dynamics
种群动态中的扩散、定向运动、时空异质性
  • 批准号:
    1714487
  • 财政年份:
    2017
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Standard Grant
Diffusion in Heterogeneous Environments
异构环境中的扩散
  • 批准号:
    1210400
  • 财政年份:
    2012
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Standard Grant
Concentration Phenomena in Pattern Formation
图案形成中的集中现象
  • 批准号:
    0653043
  • 财政年份:
    2007
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Continuing Grant
Diffusion and Cross-Diffusion in Pattern Formation
图案形成中的扩散和交叉扩散
  • 批准号:
    9988635
  • 财政年份:
    2000
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Diffusion, Cross-Diffusion and Spike Layers
数学科学:扩散、交叉扩散和尖峰层
  • 批准号:
    9705639
  • 财政年份:
    1997
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Partial Differential Equations and Systems
数学科学:非线性偏微分方程和系统
  • 批准号:
    9401333
  • 财政年份:
    1994
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Semilinear Partial Differential Equations and Systems
数学科学:半线性偏微分方程和系统
  • 批准号:
    9101446
  • 财政年份:
    1991
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Nonlinear Diffusion Equations and Their Equilibrium States, University of Wales,Wales, England, August 20-30, 1989
数学科学:非线性扩散方程及其平衡态会议,威尔士大学,英国威尔士,1989 年 8 月 20-30 日
  • 批准号:
    8815183
  • 财政年份:
    1989
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Semilinear Elliptic Equations and Systems
数学科学:半线性椭圆方程和系统
  • 批准号:
    8801587
  • 财政年份:
    1988
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Semilinear Elliptic Equations and Systems
数学科学:半线性椭圆方程和系统
  • 批准号:
    8601246
  • 财政年份:
    1986
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Standard Grant

相似海外基金

Elucidation of multi-component diffusion phenomena and comprehensive study of lithium deposition mechanism by in-situ observation techniques
原位观测技术阐明多组分扩散现象并综合研究锂沉积机理
  • 批准号:
    23KJ0054
  • 财政年份:
    2023
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Homogenization in Anomalous Diffusion Phenomena and its Applications to Inverse Problems
反常扩散现象的均匀化及其在反问题中的应用
  • 批准号:
    21K20333
  • 财政年份:
    2021
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Active Cortical Domains Coupled by Bulk Diffusion Framework for Modeling Spatiotemporal Phenomena in Cell Biology
通过体扩散框架耦合的活动皮质域来模拟细胞生物学中的时空现象
  • 批准号:
    2052687
  • 财政年份:
    2021
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Standard Grant
Diffusion Phenomena in Cells: Superstatistical Diffusion Theory and Formal Analogy between Diffusivity and Thermodynamics
细胞内的扩散现象:超统计扩散理论以及扩散率与热力学之间的形式类比
  • 批准号:
    21K03394
  • 财政年份:
    2021
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of Photo-Induced Ion Diffusion Phenomena at Thin Film Interfaces and its Application to "Photochromic Batteries"
薄膜界面光致离子扩散现象的控制及其在“光致变色电池”中的应用
  • 批准号:
    20H02086
  • 财政年份:
    2020
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of propagation phenomena and singularity of the logarithmic diffusion equation
对数扩散方程的传播现象和奇异性分析
  • 批准号:
    20K03708
  • 财政年份:
    2020
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Propagation phenomena in reaction-diffusion equations involving nonlinear diffusion and multi-stable reaction term
涉及非线性扩散和多稳态反应项的反应扩散方程中的传播现象
  • 批准号:
    20K03709
  • 财政年份:
    2020
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation and modeling for the high Peclet number turbulent diffusion and reactive phenomena near the turbulent/non-turbulent inteface
湍流/非湍流界面附近的高佩克莱特数湍流扩散和反应现象的阐明和建模
  • 批准号:
    18H01369
  • 财政年份:
    2018
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Clarification of machining phenomena due to diffusion of electrical discharge removal heat quantity and residual heat quantity or its application to surface function control
澄清由于放电去除热量和残余热量的扩散而导致的加工现象或其在表面功能控制中的应用
  • 批准号:
    17K06086
  • 财政年份:
    2017
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Model for non-equimolar counter diffusion in molecular diffusion region by breaking down the phenomena
通过分解现象建立分子扩散区域非等摩尔反扩散模型
  • 批准号:
    16K06831
  • 财政年份:
    2016
  • 资助金额:
    $ 18.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了