Strongly Correlated Quantum Gas with Single Site Addressability

具有单站点可寻址性的强相关量子气体

基本信息

  • 批准号:
    0653509
  • 负责人:
  • 金额:
    $ 40.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-15 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

Amazing progress has recently been made in the field of ultracold quantum gases. Mott insulator and maximally entangled quantum states have been realized in optical lattices, and condensation of pairs of fermionic atoms in the BCS-BEC crossover has been observed. With these systems it now becomes possible to study fundamental questions of modern solid state and quantum information physics with atomic physics experiments. Currently, the most significant limitation for many experiments on strongly correlated quantum gases is the lack of high-resolution optical access and single lattice site addressability. The goal for this project is to overcome current limitations and to study new physics with a novel experimental system, in which a strongly correlated quantum gas in an optical lattice can be probed and manipulated with unprecedented optical resolution and single lattice site addressability. Two-dimensional optical lattice potentials will be superimposed to an optical surface trap, resulting in sub micron lattices with single lattice site addressability. This new system will be used to realize and study complex, strongly correlated quantum gases with unprecedented control and accessibility. This work is expected to have broad impact on research, education and technology. The new experiment will be an important step in the world-wide quest for the experimental realization of novel strongly correlated quantum states of matter. Parallel to the research, the PI is developing a new advanced optics course covering quantum electronics and modern optics. Graduate and undergraduate students will participate by developing lecture demonstrations for this course based on new insights they got while developing complex optical systems for the experiment. Experiments studying strongly correlated quantum states with optical addressability should present unique opportunities to answer outstanding questions in modern condensed matter and quantum physics. A better understanding of this fundamental physics can lead to quantum information applications and to new materials, such as superconductors with higher critical temperatures.
最近在超冷量子气体领域取得了惊人的进展。 在光学晶格中实现了Mott绝缘体和最大纠缠量子态,观察到了BCS-BEC交叉中费米原子对的凝聚。 有了这些系统,现在可以用原子物理实验研究现代固态和量子信息物理的基本问题。 目前,许多强关联量子气体实验的最大限制是缺乏高分辨率的光学访问和单晶格位置寻址能力。 该项目的目标是克服当前的限制,并利用一种新的实验系统研究新的物理学,在这种实验系统中,可以以前所未有的光学分辨率和单晶格位置寻址能力探测和操纵光学晶格中的强相关量子气体。 二维光学晶格势将叠加到光学表面陷阱,导致具有单晶格位置寻址能力的亚微米晶格。 这个新系统将用于实现和研究复杂的,强相关的量子气体,具有前所未有的控制和可访问性。 预计这项工作将对研究、教育和技术产生广泛影响。 新的实验将是世界范围内寻求实验实现新的强相关物质量子态的重要一步。 在研究的同时,PI正在开发一门新的高级光学课程,涵盖量子电子学和现代光学。 研究生和本科生将参与开发讲座演示本课程的基础上,他们得到的新见解,而开发复杂的光学系统的实验。 研究具有光学可寻址性的强关联量子态的实验应该为回答现代凝聚态和量子物理学中的突出问题提供独特的机会。 更好地理解这一基本物理学可以导致量子信息应用和新材料,如具有更高临界温度的超导体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Markus Greiner其他文献

Identification of signal peptide features for substrate specificity in human Sec62/Sec63‐dependent ER protein import
人 Sec62/Sec63 依赖的 ER 蛋白导入中底物特异性信号肽特征的鉴定
  • DOI:
    10.1111/febs.15274
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stefan Schorr;Duy Nguyen;Sarah Haßdenteufel;Nagarjuna Nagaraj;A. Cavalié;Markus Greiner;P. Weissgerber;Marisa Loi;A. Paton;J. Paton;M. Molinari;F. Förster;J. Dudek;Sven Lang;V. Helms;R. Zimmermann
  • 通讯作者:
    R. Zimmermann
Real-Time Analysis of LNCaP Cell Growth in Different Media
不同培养基中 LNCaP 细胞生长的实时分析
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Markus Greiner;B. Kreutzer;G. Unteregger;B. Wullich;R. Zimmermann
  • 通讯作者:
    R. Zimmermann
Fast single atom imaging for optical lattice arrays
用于光晶格阵列的快速单原子成像
  • DOI:
    10.1038/s41467-025-56305-y
  • 发表时间:
    2025-01-25
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Lin Su;Alexander Douglas;Michal Szurek;Anne H. Hébert;Aaron Krahn;Robin Groth;Gregory A. Phelps;Ognjen Marković;Markus Greiner
  • 通讯作者:
    Markus Greiner
Proteomics identifies signal peptide features determining the substrate specificity in human Sec62/Sec63-dependent ER protein import
蛋白质组学鉴定信号肽特征,确定人 Sec62/Sec63 依赖性 ER 蛋白导入中的底物特异性
  • DOI:
    10.1101/867762
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stefan Schorr;Duy Nguyen;Sarah Haßdenteufel;Nagarjuna Nagaraj;A. Cavalié;Markus Greiner;P. Weissgerber;Marisa Loi;A. Paton;J. Paton;M. Molinari;F. Förster;J. Dudek;Sven Lang;V. Helms;R. Zimmermann
  • 通讯作者:
    R. Zimmermann
A neutral-atom Hubbard quantum simulator in the cryogenic regime
低温态下的中性原子哈伯德量子模拟器
  • DOI:
    10.1038/s41586-025-09112-w
  • 发表时间:
    2025-06-11
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Muqing Xu;Lev Haldar Kendrick;Anant Kale;Youqi Gang;Chunhan Feng;Shiwei Zhang;Aaron W. Young;Martin Lebrat;Markus Greiner
  • 通讯作者:
    Markus Greiner

Markus Greiner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Markus Greiner', 18)}}的其他基金

Collaborative Research: Understanding Subatomic-Scale Quantum Matter Data Using Machine Learning Tools
协作研究:使用机器学习工具理解亚原子尺度的量子物质数据
  • 批准号:
    1934598
  • 财政年份:
    2019
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Continuing Grant
Microscopy of Bosonic Fractional Quantum Hall States in Optical Lattices
光学晶格中玻色子分数量子霍尔态的显微镜观察
  • 批准号:
    1806604
  • 财政年份:
    2018
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Continuing Grant
Fractional Quantum Hall Physics with Ultracold Atoms
超冷原子的分数量子霍尔物理
  • 批准号:
    1506203
  • 财政年份:
    2015
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Continuing Grant
Strongly Correlated Quantum Gases with Single Site Addressability
具有单点可寻址性的强相关量子气体
  • 批准号:
    0969772
  • 财政年份:
    2010
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Continuing Grant

相似海外基金

Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
  • 批准号:
    2316598
  • 财政年份:
    2024
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Continuing Grant
Giant modulation of the speed of nonlinear quantum phase transitions in strongly correlated materials via chemical bonding force engineering and its application to emergent neuromorphic devices
通过化学键合力工程对强相关材料中非线性量子相变速度的巨大调制及其在新兴神经形态器件中的应用
  • 批准号:
    23K03919
  • 财政年份:
    2023
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Universal Quantum Dynamics of Impurity Particles in Strongly Correlated Matter
强相关物质中杂质粒子的通用量子动力学
  • 批准号:
    23H01174
  • 财政年份:
    2023
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Competing charge, spin, and molecular lattice interactions lead to quantum glass phases in strongly correlated pi-electron systems
竞争性电荷、自旋和分子晶格相互作用导致强相关π电子系统中的量子玻璃相
  • 批准号:
    23H01114
  • 财政年份:
    2023
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
  • 批准号:
    RGPIN-2018-05502
  • 财政年份:
    2022
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Discovery Grants Program - Individual
Development of resonant-tunneling Mott transistor based on double quantum well structures of strongly correlated oxides.
开发基于强相关氧化物双量子阱结构的谐振隧道莫特晶体管。
  • 批准号:
    22H01948
  • 财政年份:
    2022
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
  • 批准号:
    RGPIN-2020-05615
  • 财政年份:
    2022
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Discovery Grants Program - Individual
Strongly correlated quantum materials
强相关量子材料
  • 批准号:
    RGPIN-2019-05312
  • 财政年份:
    2022
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Discovery Grants Program - Individual
Engineering Strongly Correlated Quantum Phases Through Symmetry Breaking in GNRs
通过 GNR 对称性破缺设计强相关量子相
  • 批准号:
    2203911
  • 财政年份:
    2022
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Continuing Grant
Construction of effective theories based on hidden symmetries and their application to strongly correlated quantum liquids
基于隐对称性的有效理论构建及其在强相关量子液体中的应用
  • 批准号:
    21K03384
  • 财政年份:
    2021
  • 资助金额:
    $ 40.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了