Cohomological Methods in the Representation Theory of Algebraic Groups, Quantum Groups and Superalgebras
代数群、量子群和超代数表示论中的上同调方法
基本信息
- 批准号:0654169
- 负责人:
- 金额:$ 15.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-15 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator (PI) will investigate problems involving cohomological methods with applications to the representation theory of algebraic groups, quantum groups, and Lie superalgebras. More specifically, the PI aims to expand our knowledge of important cohomological calculations for algebraic groups, quantum groups and Lie algebras. Studying line bundle cohomology for the flag variety will play a prominent role in these calculations through a series of steps involving Lie algebra and Frobenius kernel cohomology. The PI proposes to utilize geometric methods to study the representation theory through the use of support varieties. For Lie superalgebras, this approach provides a beautiful homological interpretation of the well-studied combinatorial notions of defect and atypicality. Representation theory emerged about 100 years ago with the pioneering work of Frobenius and Schur, and has become a central area of mathematics because of its connections to combinatorics, algebraic geometry, number theory, and applications to physics. Cohomology theories were developed throughout the 20th century by topologists to construct algebraic invariants for the investigation of manifolds and topological spaces. Cohomology was also defined for algebraic structures like groups and Lie algebras to determine ways in which their representations can be glued together. Even more striking is how the cohomology of algebraic structures can be used to introduce the underlying geometry, which is not seen at the representation theoretic level, into the picture. The PI has been actively promoting the working knowledge of cohomological methods in representation theory and has recently organized several conferences in the area with an emphasis toward the development of junior mathematicians. The PI also co-directs a research group in algebra at the University of Georgia. This group provides practical training in representation theory for postdoctoral fellows and students through the use of computer algebra packages and the publication of research.
首席研究员(PI)将研究涉及上同调方法的问题,并将其应用于代数群、量子群和李超代数的表示理论。更具体地说,PI旨在扩展我们对代数群、量子群和李代数的重要上同调计算的知识。通过一系列涉及李代数和Frobenius核上同调的步骤,研究FLAG簇的线丛上同调将在这些计算中发挥重要作用。PI建议利用几何方法,通过使用支持变种来研究表示理论。对于李超代数,这个方法提供了一个漂亮的同调解释,充分研究了缺陷和非典型性的组合概念。表示论在大约100年前随着Frobenius和Schur的开创性工作而出现,并因其与组合学、代数几何、数论和物理应用的联系而成为数学的中心领域。上同调理论是由拓扑学家在整个20世纪发展起来的,用来构造用于流形和拓扑空间研究的代数不变量。上同调也被定义为代数结构,如群和李代数,以确定它们的表示可以粘合在一起的方式。更令人惊讶的是,代数结构的上同调如何被用来将在表示理论层面上看不到的潜在几何引入画面。国际数学家协会一直在积极推广表示理论中上同调方法的工作知识,最近在该领域组织了几次会议,重点是发展初级数学家。PI还联合领导了佐治亚大学的一个代数学研究小组。该小组通过使用计算机代数工具包和出版研究成果,为博士后研究员和学生提供表示理论方面的实践培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Nakano其他文献
On the realization of orbit closures as support varieties
论轨道闭合作为支撑品种的实现
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Toshiyuki Tanisaki;Daniel Nakano - 通讯作者:
Daniel Nakano
Daniel Nakano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Nakano', 18)}}的其他基金
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
- 批准号:
2401184 - 财政年份:2024
- 资助金额:
$ 15.97万 - 项目类别:
Continuing Grant
Monoidal Triangular Categories: Representation Theory, Cohomology, and Geometry
幺半群三角范畴:表示论、上同调和几何
- 批准号:
2101941 - 财政年份:2021
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Representations, Cohomology, and Geometry in Tensor Triangulated Categories
张量三角范畴中的表示、上同调和几何
- 批准号:
1701768 - 财政年份:2017
- 资助金额:
$ 15.97万 - 项目类别:
Continuing Grant
Representation Theory, Geometry, and Cohomology in Tensor Triangulated Categories
张量三角范畴中的表示论、几何和上同调
- 批准号:
1402271 - 财政年份:2014
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Cohomology, Geometry and Representation Theory: Algebraic Groups, Quantum Groups and Lie Superalgebras
上同调、几何和表示论:代数群、量子群和李超代数
- 批准号:
1002135 - 财政年份:2010
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Vertical Integration of Research and Education in Mathematics at the University of Georgia
佐治亚大学数学研究与教育的垂直整合
- 批准号:
0738586 - 财政年份:2008
- 资助金额:
$ 15.97万 - 项目类别:
Continuing Grant
Cohomology and Representation Theory: Reductive Algebraic Groups and Related Structures
上同调和表示论:还原代数群及相关结构
- 批准号:
0136082 - 财政年份:2001
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Cohomology and Representation Theory: Algebraic Groups, Finite Groups and Lie Algebras
上同调和表示论:代数群、有限群和李代数
- 批准号:
9800960 - 财政年份:1998
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Mathematical Sciences: Cohomology and Representation Theory of Algebraic Groups and Lie Algebras
数学科学:代数群和李代数的上同调和表示论
- 批准号:
9500715 - 财政年份:1995
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Categorical methods in representation theory and quantum topology
会议:表示论和量子拓扑中的分类方法
- 批准号:
2204700 - 财政年份:2022
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2022
- 资助金额:
$ 15.97万 - 项目类别:
Discovery Grants Program - Individual
Improving mechanistic representation of boreal forests using cutting edge gas exchange methods and remote sensing
利用尖端气体交换方法和遥感改善北方森林的机械表征
- 批准号:
569656-2022 - 财政年份:2022
- 资助金额:
$ 15.97万 - 项目类别:
Postgraduate Scholarships - Doctoral
Sheaf-Theoretic Methods in Modular Representation Theory
模表示理论中的层理论方法
- 批准号:
2202012 - 财政年份:2022
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Improving the representation of microbial reference genomes using pangenome reference sequence graphs - Methods for efficient construction and representation of pangenome graphs for microbial data
使用泛基因组参考序列图改善微生物参考基因组的表示 - 微生物数据的泛基因组图的有效构建和表示方法
- 批准号:
557997-2021 - 财政年份:2022
- 资助金额:
$ 15.97万 - 项目类别:
Postdoctoral Fellowships
Improving the representation of microbial reference genomes using pangenome reference sequence graphs - Methods for efficient construction and representation of pangenome graphs for microbial data
使用泛基因组参考序列图改善微生物参考基因组的表示 - 微生物数据的泛基因组图的有效构建和表示方法
- 批准号:
557997-2021 - 财政年份:2021
- 资助金额:
$ 15.97万 - 项目类别:
Postdoctoral Fellowships
Geometric Methods in Representation Theory and the Langlands Program
表示论中的几何方法和朗兰兹纲领
- 批准号:
2101837 - 财政年份:2021
- 资助金额:
$ 15.97万 - 项目类别:
Continuing Grant
Improving Students’ Creative Problem Solving Skills in Engineering using Visual Representation Methods
使用视觉表示方法提高学生创造性解决工程问题的能力
- 批准号:
2120820 - 财政年份:2021
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
- 批准号:
RGPIN-2017-03854 - 财政年份:2021
- 资助金额:
$ 15.97万 - 项目类别:
Discovery Grants Program - Individual
Multi-objective representation learning methods for interpetable predictions of patient outcomesusing electronic health records
使用电子健康记录对患者结果进行可重复预测的多目标表示学习方法
- 批准号:
10453863 - 财政年份:2021
- 资助金额:
$ 15.97万 - 项目类别: