Cohomology and Representation Theory: Reductive Algebraic Groups and Related Structures
上同调和表示论:还原代数群及相关结构
基本信息
- 批准号:0136082
- 负责人:
- 金额:$ 10.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-10-15 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator will investigate problems involving the representation theory of reductive algebraic groups. The structures related to reductive groups include Lie algebras, Chevalley groups, Weyl groups and centralizer algebras. The methods and constructions involved in the study will be algebraic as well as geometric. The underlying theme will be to establish connections between the cohomology and representations of the objects in order to prove new and interesting results about these structures. Establishing such relationships also lends itself to providing concrete calculations. The algebraic objects known as "groups," "rings" and "Lie algebras" arise in many different physical applications in biology, chemistry and physics. These algebraic objects in general have complex internal structures and symmetries. Extracting information about these structures can provide vital information which can be used in a range of applicationssuch as those mentioned above. This project is in the areaof representation theory, which is now a central area of mathematics because it provides a systematic method for studying complicated algebraic structures. Roughly speaking, representations can be thought of as ``snapshots'' of some algebraic object fromdifferent viewing angles. These snapshots are provided via explicitly described matrices. By putting together the information from the representations, many questions surrounding these complicated algebraic systems can be answered.
主要研究人员将研究涉及约化代数群表示理论的问题。与约化群相关的结构包括李代数、Chvalley群、Weyl群和中心化子代数。研究中涉及的方法和结构将是代数和几何的。潜在的主题将是在对象的上同调和表示之间建立联系,以便证明关于这些结构的新的和有趣的结果。建立这样的关系也有助于提供具体的计算。被称为“群”、“环”和“李代数”的代数对象出现在生物、化学和物理中的许多不同的物理应用中。这些代数对象通常具有复杂的内部结构和对称性。提取关于这些结构的信息可以提供重要的信息,这些信息可以用于诸如上述的一系列应用。这个项目属于表示论领域,这是现在数学的一个中心领域,因为它为研究复杂的代数结构提供了一种系统的方法。粗略地说,表象可以被认为是某个代数对象从不同视角拍摄的“快照”。这些快照是通过明确描述的矩阵提供的。通过将表示法中的信息组合在一起,围绕这些复杂的代数系统的许多问题都可以得到解答。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Nakano其他文献
On the realization of orbit closures as support varieties
论轨道闭合作为支撑品种的实现
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Toshiyuki Tanisaki;Daniel Nakano - 通讯作者:
Daniel Nakano
Daniel Nakano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Nakano', 18)}}的其他基金
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
- 批准号:
2401184 - 财政年份:2024
- 资助金额:
$ 10.1万 - 项目类别:
Continuing Grant
Monoidal Triangular Categories: Representation Theory, Cohomology, and Geometry
幺半群三角范畴:表示论、上同调和几何
- 批准号:
2101941 - 财政年份:2021
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Representations, Cohomology, and Geometry in Tensor Triangulated Categories
张量三角范畴中的表示、上同调和几何
- 批准号:
1701768 - 财政年份:2017
- 资助金额:
$ 10.1万 - 项目类别:
Continuing Grant
Representation Theory, Geometry, and Cohomology in Tensor Triangulated Categories
张量三角范畴中的表示论、几何和上同调
- 批准号:
1402271 - 财政年份:2014
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Cohomology, Geometry and Representation Theory: Algebraic Groups, Quantum Groups and Lie Superalgebras
上同调、几何和表示论:代数群、量子群和李超代数
- 批准号:
1002135 - 财政年份:2010
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Vertical Integration of Research and Education in Mathematics at the University of Georgia
佐治亚大学数学研究与教育的垂直整合
- 批准号:
0738586 - 财政年份:2008
- 资助金额:
$ 10.1万 - 项目类别:
Continuing Grant
Cohomological Methods in the Representation Theory of Algebraic Groups, Quantum Groups and Superalgebras
代数群、量子群和超代数表示论中的上同调方法
- 批准号:
0654169 - 财政年份:2007
- 资助金额:
$ 10.1万 - 项目类别:
Continuing Grant
Cohomology and Representation Theory: Algebraic Groups, Finite Groups and Lie Algebras
上同调和表示论:代数群、有限群和李代数
- 批准号:
9800960 - 财政年份:1998
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Cohomology and Representation Theory of Algebraic Groups and Lie Algebras
数学科学:代数群和李代数的上同调和表示论
- 批准号:
9500715 - 财政年份:1995
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
相似海外基金
Monoidal Triangular Categories: Representation Theory, Cohomology, and Geometry
幺半群三角范畴:表示论、上同调和几何
- 批准号:
2101941 - 财政年份:2021
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Cohomology of finite groups and homotopy theory of classifying spaces from the viewpoint of representation theory
从表示论的角度看有限群的上同调与空间分类同伦论
- 批准号:
21K03154 - 财政年份:2021
- 资助金额:
$ 10.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference on Equivariant Elliptic Cohomology and Geometric Representation Theory
等变椭圆上同调与几何表示理论会议
- 批准号:
1903754 - 财政年份:2019
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Applying amalgams to representation theory and cohomology
将汞齐应用于表示论和上同调
- 批准号:
1935781 - 财政年份:2017
- 资助金额:
$ 10.1万 - 项目类别:
Studentship
Cohomology theory of finite groups from the viewpoint of representation theory
从表示论的角度看有限群的上同调理论
- 批准号:
16K05054 - 财政年份:2016
- 资助金额:
$ 10.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation Theory, Geometry, and Cohomology in Tensor Triangulated Categories
张量三角范畴中的表示论、几何和上同调
- 批准号:
1402271 - 财政年份:2014
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Cohomology of finite groups and homotopy theory of classifying space from the view point of representation theory
表示论角度的有限群上同调与空间分类同伦论
- 批准号:
24540007 - 财政年份:2012
- 资助金额:
$ 10.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Cohomology and Support in Representation Theory and Related Topics
会议:表示论及相关主题中的上同调和支持
- 批准号:
1201345 - 财政年份:2012
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
Sylow-p subgroups of absolute galois groups, representation theory, and galois cohomology
绝对伽罗瓦群的 Sylow-p 子群、表示论和伽罗瓦上同调
- 批准号:
41981-2007 - 财政年份:2011
- 资助金额:
$ 10.1万 - 项目类别:
Discovery Grants Program - Individual
Connections between cohomology and representation theory of symmetric groups, braid groups, Hecke algebras, and algebraic groups
对称群、辫群、赫克代数和代数群的上同调与表示论之间的联系
- 批准号:
1068783 - 财政年份:2011
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant














{{item.name}}会员




