Cohomology and Representation Theory
上同调和表示论
基本信息
- 批准号:0400548
- 负责人:
- 金额:$ 11.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-10-01 至 2008-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for NSF proposal DMS-0400548 NakanoThe principal investigator will explore problems involving the representation theory and cohomology of algebraic groups, Lie algebras and finite groups. An important object of study will be support varieties which provide a bridge linking the representation theory, cohomology theory and the structure theory (involving conjugacy classes) of Lie algebras. Computations of such varieties will be considered as well as generalizations of the theory to quantum groups and affine Lie algebras. The investigator will also look at computations of cohomology groups/rings of finite Chevalley groupsand Frobenius kernels especially for primes less than the Coxeter number. It is anticipated that the use of extensive computer calculations might be necessary for several of these projects. Algebraic structures such are groups, rings and Lie algebras arise naturally, and the basic understanding of these objects have been used in applications involving biology, physics and chemistry. These algebraic objects have complicated internal symmetries. Information about the representation and cohomology theories allows one to organize and extract vital information that can be used in these various applications. The principal investigator has been actively promoting the working knowledge of these methods. He is currently organizing several conferences in representation/cohomology theory and is a co-organizer of the VIGRE (Vertical Integration of Research and Education) Algebra Group at the University of Georgia which promotes learning through active faculty and student participation.
摘要NSF提案DMS-0400548中野首席研究员将探讨涉及代数群,李代数和有限群的表示论和上同调的问题。支撑簇是李代数的一个重要研究对象,它是连接李代数的表示理论、上同调理论和结构理论(包括共轭类)的桥梁。计算这些品种将被视为以及推广的理论量子群和仿射李代数。调查人员还将着眼于计算上同调群/环的有限Chevalley groupsand Frobenius内核特别是素数小于Coxeter数。预计其中几个项目可能需要使用广泛的计算机计算。代数结构,如群,环和李代数自然产生,这些对象的基本理解已被用于涉及生物学,物理学和化学的应用。这些代数对象具有复杂的内部对称性。信息的代表性和上同调理论允许一个组织和提取的重要信息,可以在这些不同的应用程序中使用。主要研究者一直在积极推广这些方法的工作知识。他目前正在组织几次会议的代表性/上同调理论,是一个共同组织者的VIGRE(垂直整合的研究和教育)代数组在格鲁吉亚大学,促进学习通过积极的教师和学生的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Nakano其他文献
On the realization of orbit closures as support varieties
论轨道闭合作为支撑品种的实现
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Toshiyuki Tanisaki;Daniel Nakano - 通讯作者:
Daniel Nakano
Daniel Nakano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Nakano', 18)}}的其他基金
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
- 批准号:
2401184 - 财政年份:2024
- 资助金额:
$ 11.84万 - 项目类别:
Continuing Grant
Monoidal Triangular Categories: Representation Theory, Cohomology, and Geometry
幺半群三角范畴:表示论、上同调和几何
- 批准号:
2101941 - 财政年份:2021
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Representations, Cohomology, and Geometry in Tensor Triangulated Categories
张量三角范畴中的表示、上同调和几何
- 批准号:
1701768 - 财政年份:2017
- 资助金额:
$ 11.84万 - 项目类别:
Continuing Grant
Representation Theory, Geometry, and Cohomology in Tensor Triangulated Categories
张量三角范畴中的表示论、几何和上同调
- 批准号:
1402271 - 财政年份:2014
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Cohomology, Geometry and Representation Theory: Algebraic Groups, Quantum Groups and Lie Superalgebras
上同调、几何和表示论:代数群、量子群和李超代数
- 批准号:
1002135 - 财政年份:2010
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Vertical Integration of Research and Education in Mathematics at the University of Georgia
佐治亚大学数学研究与教育的垂直整合
- 批准号:
0738586 - 财政年份:2008
- 资助金额:
$ 11.84万 - 项目类别:
Continuing Grant
Cohomological Methods in the Representation Theory of Algebraic Groups, Quantum Groups and Superalgebras
代数群、量子群和超代数表示论中的上同调方法
- 批准号:
0654169 - 财政年份:2007
- 资助金额:
$ 11.84万 - 项目类别:
Continuing Grant
Cohomology and Representation Theory: Reductive Algebraic Groups and Related Structures
上同调和表示论:还原代数群及相关结构
- 批准号:
0136082 - 财政年份:2001
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Cohomology and Representation Theory: Algebraic Groups, Finite Groups and Lie Algebras
上同调和表示论:代数群、有限群和李代数
- 批准号:
9800960 - 财政年份:1998
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Mathematical Sciences: Cohomology and Representation Theory of Algebraic Groups and Lie Algebras
数学科学:代数群和李代数的上同调和表示论
- 批准号:
9500715 - 财政年份:1995
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
相似海外基金
Monoidal Triangular Categories: Representation Theory, Cohomology, and Geometry
幺半群三角范畴:表示论、上同调和几何
- 批准号:
2101941 - 财政年份:2021
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Cohomology of finite groups and homotopy theory of classifying spaces from the viewpoint of representation theory
从表示论的角度看有限群的上同调与空间分类同伦论
- 批准号:
21K03154 - 财政年份:2021
- 资助金额:
$ 11.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference on Equivariant Elliptic Cohomology and Geometric Representation Theory
等变椭圆上同调与几何表示理论会议
- 批准号:
1903754 - 财政年份:2019
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Applying amalgams to representation theory and cohomology
将汞齐应用于表示论和上同调
- 批准号:
1935781 - 财政年份:2017
- 资助金额:
$ 11.84万 - 项目类别:
Studentship
Cohomology theory of finite groups from the viewpoint of representation theory
从表示论的角度看有限群的上同调理论
- 批准号:
16K05054 - 财政年份:2016
- 资助金额:
$ 11.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation Theory, Geometry, and Cohomology in Tensor Triangulated Categories
张量三角范畴中的表示论、几何和上同调
- 批准号:
1402271 - 财政年份:2014
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Cohomology of finite groups and homotopy theory of classifying space from the view point of representation theory
表示论角度的有限群上同调与空间分类同伦论
- 批准号:
24540007 - 财政年份:2012
- 资助金额:
$ 11.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Cohomology and Support in Representation Theory and Related Topics
会议:表示论及相关主题中的上同调和支持
- 批准号:
1201345 - 财政年份:2012
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Sylow-p subgroups of absolute galois groups, representation theory, and galois cohomology
绝对伽罗瓦群的 Sylow-p 子群、表示论和伽罗瓦上同调
- 批准号:
41981-2007 - 财政年份:2011
- 资助金额:
$ 11.84万 - 项目类别:
Discovery Grants Program - Individual
Connections between cohomology and representation theory of symmetric groups, braid groups, Hecke algebras, and algebraic groups
对称群、辫群、赫克代数和代数群的上同调与表示论之间的联系
- 批准号:
1068783 - 财政年份:2011
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant