Fractals and Tilings

分形和平铺

基本信息

  • 批准号:
    0654408
  • 负责人:
  • 金额:
    $ 17.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

This project is devoted to several problems in fractal geometry and the theory of tilings and substitutions. Bernoulli convolutions are, perhaps, the simplest examples of self-similar measures with overlaps. They appeared in many different branches of mathematics and science, including signal processing, number theory and harmonic analysis.This project will investigate novel phenomena related to their multifractal spectrum, which are linked to expansions in non-integer bases. It will also address random analogs of Bernoulli convolutions, such as "branching random walks with exponentially decreasing steps."In the area of tilings and tiling dynamical systems, it is proposed to complete the characterization of expansion maps for self-affine tilings, which should lead to advances in problems on associated dynamical systems. This program was started by Thurston and Kenyon, and it has connections with geometric dynamics, theory of laminations, and rigidity theory.Another question which will be addressed is about the nature of the continuous spectral component of substitution dynamical systems.Many of the sets which appear in modern mathematics have complicated structure and cannot be described analytically. Mandelbrot introduced the term "fractal" for such sets and demonstrated that they can be useful for modeling many natural phenomena. On the other hand, mathematicians such as Peano, Cantor and Weierstrass, investigated mathematical fractals (without using this term) since the 19th century.The simplest and most basic among fractal objects are self-similar sets and measures. "Self-similarity" means, roughly speaking, that "zooming in"into the object one can see similar pictures at arbitrarily small scales.Also important are fractalsdefined probabilistically, which exhibit statistical self-similarity; they often serve as more realistic models in applications. This project will address several delicate questions on the structure of fractal sets.The second part of the proposal has to do with tilings and substitutions; it has links to fractals, but also to combinatorics and discrete geometry.Self-similar tilings, such as the Penrose tilings, have been used as models for quasicrystals, and the associated dynamical systems and their spectral properties turned out to be relevant for solid-state physics.
这个项目致力于研究分形几何中的几个问题,以及拼接和置换理论。伯努利卷积也许是具有重叠的自相似度量的最简单的例子。它们出现在许多不同的数学和科学分支中,包括信号处理、数论和调和分析。这个项目将研究与它们的多重分形谱相关的新现象,这些现象与非整数基的展开有关。它还将解决与Bernoulli卷积类似的随机问题,例如“具有指数递减步长的分支随机游动”。在瓦片和瓦片动力系统领域,有人建议完成自仿射瓦片的扩展映射的刻画,这将导致相关动力系统问题的进展。这个程序是由瑟斯顿和凯尼恩发起的,它与几何动力学、层合理论和刚性理论有关。另一个要解决的问题是关于替代动力系统的连续谱分量的性质。现代数学中出现的许多集合都具有复杂的结构,不能用解析的方式描述。曼德尔布洛特为这类集合引入了“分形”一词,并证明它们可用于对许多自然现象进行建模。另一方面,自19世纪以来,皮亚诺、康托和魏尔斯特拉斯等数学家研究了数学分形学(不使用这一术语)。最简单和最基本的分形体是自相似集和测度。“自相似”指的是,粗略地说,“放大”一个人可以在任意小的尺度上看到相似的图片。同样重要的是概率地定义的分形图,它表现出统计上的自相似性;它们通常在应用中用作更真实的模型。这个项目将解决几个关于分形集结构的微妙问题。提案的第二部分与分形和置换有关;它与分形学有联系,但也与组合学和离散几何有关。自相似分块,如彭罗斯分块,已被用作准晶的模型,相关的动力系统及其光谱特性被证明与固体物理有关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boris Solomyak其他文献

On the `Mandelbrot set' for a pair of linear maps and complex Bernoulli convolutions
关于一对线性映射和复杂伯努利卷积的“Mandelbrot 集”
  • DOI:
    10.1088/0951-7715/16/5/311
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Boris Solomyak;Hui Xu
  • 通讯作者:
    Hui Xu
A note on spectral properties of random $S$-adic systems
关于随机 $S$-adic 系统光谱特性的注释
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boris Solomyak
  • 通讯作者:
    Boris Solomyak
On the dimension of Furstenberg measure for $${ SL}_{2}(\mathbb {R})$$ random matrix products
  • DOI:
    10.1007/s00222-017-0740-6
  • 发表时间:
    2017-08-04
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Michael Hochman;Boris Solomyak
  • 通讯作者:
    Boris Solomyak
On nonlinear iterated function systems with overlaps
具有重叠的非线性迭代函数系统
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boris Solomyak
  • 通讯作者:
    Boris Solomyak
Some High-Complexity Hamiltonians with Purely Singular Continuous Spectrum
  • DOI:
    10.1007/s00023-002-8613-x
  • 发表时间:
    2002-03-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    David Damanik;Boris Solomyak
  • 通讯作者:
    Boris Solomyak

Boris Solomyak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boris Solomyak', 18)}}的其他基金

Fractals and Ergodic Theory
分形和遍历理论
  • 批准号:
    1361424
  • 财政年份:
    2014
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Ergodic Theory, Dynamics and Fractals
遍历理论、动力学和分形
  • 批准号:
    0968879
  • 财政年份:
    2010
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Continuing Grant
Measures, Dimension, and Ergodic Theory
测度、维度和遍历理论
  • 批准号:
    0355187
  • 财政年份:
    2004
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Topics in Fractal Geometry, Dynamics, and Ergodic Theory
分形几何、动力学和遍历理论主题
  • 批准号:
    0099814
  • 财政年份:
    2001
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Continuing Grant
Dimension and Dynamics
维度与动力学
  • 批准号:
    9800786
  • 财政年份:
    1998
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Measures, Dimension and Spectrum
数学科学:测度、维数和谱
  • 批准号:
    9500744
  • 财政年份:
    1995
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Ergodic Theory and OperatorTheory
数学科学:遍历理论和算子理论专题
  • 批准号:
    9201369
  • 财政年份:
    1992
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant

相似海外基金

Research on absolutely continuous diffraction and dynamical spectra for S-adic tilings
S-adic平铺的绝对连续衍射和动力学光谱研究
  • 批准号:
    23K12985
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Complexity of random substitution tilings
随机替换平铺的复杂性
  • 批准号:
    EP/Y023358/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Research Grant
Translational Tilings and Orthogonal Systems of Exponentials
平移平铺和正交指数系统
  • 批准号:
    2154580
  • 财政年份:
    2022
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Translational Tilings and Orthogonal Systems of Exponentials
平移平铺和正交指数系统
  • 批准号:
    2242871
  • 财政年份:
    2022
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
The Farey framework for SL2-tilings
SL2-tilings 的 Farey 框架
  • 批准号:
    EP/W002817/1
  • 财政年份:
    2022
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Research Grant
Enumeration, random tilings and integrable probability
枚举、随机平铺和可积概率
  • 批准号:
    574832-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.25万
  • 项目类别:
    University Undergraduate Student Research Awards
Matchings and tilings in graphs
图表中的匹配和平铺
  • 批准号:
    EP/V002279/1
  • 财政年份:
    2021
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Research Grant
Operator algebras and substitution tilings
算子代数和替换平铺
  • 批准号:
    562929-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 17.25万
  • 项目类别:
    University Undergraduate Student Research Awards
Novel superior materials based on aperiodic tilings
基于非周期性平铺的新型优质材料
  • 批准号:
    EP/V047108/1
  • 财政年份:
    2021
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Research Grant
Expansion of the research on alternating sign matrices, plane partitions and tilings in the aspect of distributive lattice
分布格方面交替符号矩阵、平面划分和平铺的研究拓展
  • 批准号:
    20K03558
  • 财政年份:
    2020
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了