Dimension and Dynamics
维度与动力学
基本信息
- 批准号:9800786
- 负责人:
- 金额:$ 7.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2001-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTSolomyak The goal of this project is to investigate self-similar measures and sets, self-affine sets, and attractors of non-linear iterated function systems. The main emphasis is on the "overlapping" case when the symbolic coding is non-unique, and the closely related higher-dimensional non-conformal case. Hyperbolic and parabolic systems will be considered. The topics includedimension computation, the study of topological properties of attractors, and smoothness properties of natural measures on them. The methods of symbolic dynamics and ergodic theory, number theory and geometric measure theory, harmonic and complex analysis will be used. Dynamical systems describe a wide range of phenomena,such as the motion of planets and asteroids, the rise and fall of populations, the weather, and the stock market. Many of these systems exhibit "chaotic" behavior and have "attractors" of intricate shapes and structure. This structure can often be explained by an underlying "self-similarity" which means thatthe object looks similar at all scales. The "fractal dimension" of the attractor is one of the basic characteristics which can be used to distinguish systems of different nature.Topological properties, such as connectedness and presence of the interior are also very important. We are still veryfar from complete understanding of these complex objects, and this study aims to investigate them in a number of model cases. Moreover, the theory developed for this is relevant inother areas, such as computer image recognition.
Solomyak 本计画的目标是研究非线性迭代函数系统的自相似测度与集、自仿射集与吸引子。主要强调的是“重叠”的情况下,符号编码是非唯一的,以及密切相关的高维非共形的情况下。将考虑双曲和抛物系统。主要内容包括维数计算、吸引子的拓扑性质和吸引子上的自然测度的光滑性。将使用符号动力学和遍历理论,数论和几何测度理论,调和分析和复分析的方法。 动力系统描述了一系列广泛的现象,如行星和小行星的运动,人口的上升和下降,天气和股票市场。这些系统中的许多表现出“混沌”行为,并具有复杂形状和结构的“吸引子”。这种结构通常可以用潜在的“自相似性”来解释,这意味着物体在所有尺度下看起来都是相似的。吸引子的“分形维数”是区分不同性质系统的基本特征之一,其拓扑性质如连通性、内部存在性等也很重要。我们离完全理解这些复杂的物体还很远,本研究的目的是在一些模型案例中研究它们。此外,为此开发的理论与其他领域相关,例如计算机图像识别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boris Solomyak其他文献
On the `Mandelbrot set' for a pair of linear maps and complex Bernoulli convolutions
关于一对线性映射和复杂伯努利卷积的“Mandelbrot 集”
- DOI:
10.1088/0951-7715/16/5/311 - 发表时间:
2003 - 期刊:
- 影响因子:1.7
- 作者:
Boris Solomyak;Hui Xu - 通讯作者:
Hui Xu
A note on spectral properties of random $S$-adic systems
关于随机 $S$-adic 系统光谱特性的注释
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Boris Solomyak - 通讯作者:
Boris Solomyak
On the dimension of Furstenberg measure for $${ SL}_{2}(\mathbb {R})$$ random matrix products
- DOI:
10.1007/s00222-017-0740-6 - 发表时间:
2017-08-04 - 期刊:
- 影响因子:3.600
- 作者:
Michael Hochman;Boris Solomyak - 通讯作者:
Boris Solomyak
On nonlinear iterated function systems with overlaps
具有重叠的非线性迭代函数系统
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Boris Solomyak - 通讯作者:
Boris Solomyak
Some High-Complexity Hamiltonians with Purely Singular Continuous Spectrum
- DOI:
10.1007/s00023-002-8613-x - 发表时间:
2002-03-01 - 期刊:
- 影响因子:1.300
- 作者:
David Damanik;Boris Solomyak - 通讯作者:
Boris Solomyak
Boris Solomyak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boris Solomyak', 18)}}的其他基金
Ergodic Theory, Dynamics and Fractals
遍历理论、动力学和分形
- 批准号:
0968879 - 财政年份:2010
- 资助金额:
$ 7.69万 - 项目类别:
Continuing Grant
Measures, Dimension, and Ergodic Theory
测度、维度和遍历理论
- 批准号:
0355187 - 财政年份:2004
- 资助金额:
$ 7.69万 - 项目类别:
Standard Grant
Topics in Fractal Geometry, Dynamics, and Ergodic Theory
分形几何、动力学和遍历理论主题
- 批准号:
0099814 - 财政年份:2001
- 资助金额:
$ 7.69万 - 项目类别:
Continuing Grant
Mathematical Sciences: Measures, Dimension and Spectrum
数学科学:测度、维数和谱
- 批准号:
9500744 - 财政年份:1995
- 资助金额:
$ 7.69万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Ergodic Theory and OperatorTheory
数学科学:遍历理论和算子理论专题
- 批准号:
9201369 - 财政年份:1992
- 资助金额:
$ 7.69万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Transcendental Dynamics: Hausdorff Dimension and Itineraries
超越动力学:豪斯多夫维度和行程
- 批准号:
2885593 - 财政年份:2023
- 资助金额:
$ 7.69万 - 项目类别:
Studentship
CAREER: How Diffusion, Dimension, Geometry, and Redundancy Affect Cellular Dynamics
职业:扩散、维度、几何和冗余如何影响细胞动力学
- 批准号:
1944574 - 财政年份:2020
- 资助金额:
$ 7.69万 - 项目类别:
Continuing Grant
Construction of new phase-parameter space correspondence for complex dynamics in dimension two
二维复杂动力学新相参空间对应的构建
- 批准号:
20H01809 - 财政年份:2020
- 资助金额:
$ 7.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
HDHL DIMENSION: Dietary induced methylome and transcriptome dynamics assessing nutrition impacts on cardiovascular and metabolic health
HDHL 维度:饮食诱导的甲基化组和转录组动态评估营养对心血管和代谢健康的影响
- 批准号:
BB/S020845/1 - 财政年份:2019
- 资助金额:
$ 7.69万 - 项目类别:
Research Grant
Analytic Low Dimensional Dynamics: From Dimension One to Two
解析低维动力学:从一维到二维
- 批准号:
1600519 - 财政年份:2016
- 资助金额:
$ 7.69万 - 项目类别:
Continuing Grant
Novel Kernel Methods for Data Analysis in Dynamical Systems: Applications to Dimension Reduction and Prediction in Atmospheric and Oceanic Dynamics
动力系统数据分析的新核方法:在大气和海洋动力学中的降维和预测应用
- 批准号:
1521775 - 财政年份:2015
- 资助金额:
$ 7.69万 - 项目类别:
Continuing Grant
Si quasi-nucleation with a nanometer dimension by soft X-ray irradiation onto amorphous Si and dynamics of low-temperature crystallization by excimer laser irradiation following the soft X-ray irradiation
通过软 X 射线照射非晶硅实现纳米尺寸的 Si 准成核,以及软 X 射线照射后通过准分子激光照射进行低温结晶动力学
- 批准号:
19560667 - 财政年份:2007
- 资助金额:
$ 7.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)