Ergodic Theory, Dynamics and Fractals

遍历理论、动力学和分形

基本信息

  • 批准号:
    0968879
  • 负责人:
  • 金额:
    $ 16.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-15 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

In this project, the Principal Investigator will build on his earlier work on substitutions, tiling dynamical systems, Bernoulli convolutions, and related topics, to further advance basic mathematical knowledge. Specific goals include extending the orbit equivalence theory and spectral theory to nonminimal Bratteli-Vershik and substitution systems, characterizing invariant measures for nonprimitive substitution tilings, and developing multifractal analysis of Bernoulli convolutions and related self-affine measures. It is expected that new links and connections between diverse areas will emerge in the course of this investigation. In particular, flows along stable and unstable foliations of pseudo-Anosov maps are linked to substitution systems, nonprimitive tilings give rise to fractals, such as the Sierpinski gasket self-similar tiling and the familiar fractal Sierpinski gasket set, complex rational (e.g., quadratic) and piecewise linear dynamics are sometimes related by a conjugacy. The methods and techniques used will not be limited to those from ergodic theory and dynamics but will also come from other fields, including operator algebras, combinatorics, number theory, probability, and complex analysis.The fields of ergodic theory, dynamical systems, and fractal geometry have their origins, motivation, and applications in many fields outside of mathematics, including statistical and celestial mechanics, population biology, aero- and fluid-dynamics, and materials science. A dynamical system is given by a so-called phase space and some transformation rules that prescribe how states change in time. Here "time" may be discrete or continuous, multidimensional, or more generally, given by a group. Dynamics may be regular or chaotic, or it could exhibit a "mixed" behavior. Many dynamically defined objects turn out to be "fractals." Mathematicians often study simplified models that capture the important features of the physical system in the simplest possible form. This project aims to analyze in depth several existing models, as well as develop new ones. Although it is primarily theoretical in its focus, it will advance basic knowledge in areas with diverse connections and applications. Specifically, Bernoulli convolutions and related fractal constructions have been used in signal and image processing, control theory, and econometrics; substitutions and tilings have many links to computer science and solid-state physics. The PI interacts with scientists and participates in professional meetings of an interdisciplinary nature. In addition, this project will contribute to the development of human resources through training undergraduate and graduate students.
在这个项目中,首席研究员将建立在他以前的工作替代,平铺动力系统,伯努利卷积和相关主题,以进一步推进基本的数学知识。具体目标包括扩展轨道等价理论和谱理论的非最小Bratteli-Vershik和替代系统,表征非原始替代tilings不变的措施,并发展多重分形分析伯努利卷积和相关的自仿射措施。预计在调查过程中,不同领域之间将出现新的联系和联系。特别地,沿着伪Anosov映射的稳定和不稳定叶理的沿着流动与替换系统相关联,非原始平铺产生分形,例如Sierpinski垫片自相似平铺和熟悉的分形Sierpinski垫片集,复杂的理性(例如,二次)和分段线性动力学有时通过共轭性相关。所使用的方法和技术将不仅限于遍历理论和动力学,还将来自其他领域,包括算子代数,组合学,数论,概率和复分析。遍历理论,动力系统和分形几何领域在数学之外的许多领域都有其起源,动机和应用,包括统计和天体力学,人口生物学,空气动力学、流体动力学和材料科学。一个动力系统由一个所谓的相空间和一些规定状态如何随时间变化的变换规则给出。这里的“时间”可以是离散的或连续的,多维的,或者更一般地,由一个组给出。动力学可以是规则的或混乱的,或者它可以表现出“混合”行为。许多动态定义的对象最终都是“分形”。数学家经常研究简化模型,这些模型以最简单的形式捕捉物理系统的重要特征。该项目旨在深入分析现有的几种模型,并开发新的模型。虽然它的重点主要是理论,但它将在具有不同联系和应用的领域推进基础知识。具体来说,伯努利卷积和相关的分形结构已被用于信号和图像处理,控制理论和计量经济学;替代和平铺与计算机科学和固态物理学有许多联系。PI与科学家互动,并参加跨学科性质的专业会议。此外,该项目将通过培训本科生和研究生,促进人力资源开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boris Solomyak其他文献

On the `Mandelbrot set' for a pair of linear maps and complex Bernoulli convolutions
关于一对线性映射和复杂伯努利卷积的“Mandelbrot 集”
  • DOI:
    10.1088/0951-7715/16/5/311
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Boris Solomyak;Hui Xu
  • 通讯作者:
    Hui Xu
A note on spectral properties of random $S$-adic systems
关于随机 $S$-adic 系统光谱特性的注释
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boris Solomyak
  • 通讯作者:
    Boris Solomyak
On the dimension of Furstenberg measure for $${ SL}_{2}(\mathbb {R})$$ random matrix products
  • DOI:
    10.1007/s00222-017-0740-6
  • 发表时间:
    2017-08-04
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Michael Hochman;Boris Solomyak
  • 通讯作者:
    Boris Solomyak
On nonlinear iterated function systems with overlaps
具有重叠的非线性迭代函数系统
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boris Solomyak
  • 通讯作者:
    Boris Solomyak
Some High-Complexity Hamiltonians with Purely Singular Continuous Spectrum
  • DOI:
    10.1007/s00023-002-8613-x
  • 发表时间:
    2002-03-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    David Damanik;Boris Solomyak
  • 通讯作者:
    Boris Solomyak

Boris Solomyak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boris Solomyak', 18)}}的其他基金

Fractals and Ergodic Theory
分形和遍历理论
  • 批准号:
    1361424
  • 财政年份:
    2014
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Standard Grant
Fractals and Tilings
分形和平铺
  • 批准号:
    0654408
  • 财政年份:
    2007
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Continuing Grant
Measures, Dimension, and Ergodic Theory
测度、维度和遍历理论
  • 批准号:
    0355187
  • 财政年份:
    2004
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Standard Grant
Topics in Fractal Geometry, Dynamics, and Ergodic Theory
分形几何、动力学和遍历理论主题
  • 批准号:
    0099814
  • 财政年份:
    2001
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Continuing Grant
Dimension and Dynamics
维度与动力学
  • 批准号:
    9800786
  • 财政年份:
    1998
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Measures, Dimension and Spectrum
数学科学:测度、维数和谱
  • 批准号:
    9500744
  • 财政年份:
    1995
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Ergodic Theory and OperatorTheory
数学科学:遍历理论和算子理论专题
  • 批准号:
    9201369
  • 财政年份:
    1992
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Complex dynamics: group actions, Migdal-Kadanoff renormalization, and ergodic theory
复杂动力学:群作用、Migdal-Kadanoff 重整化和遍历理论
  • 批准号:
    2154414
  • 财政年份:
    2022
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Standard Grant
Hyperbolic Dynamics in Physical Systems and Ergodic Theory
物理系统中的双曲动力学和遍历理论
  • 批准号:
    2154725
  • 财政年份:
    2022
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Standard Grant
Multiplicative Ergodic Theory, Dynamics and Applications
乘法遍历理论、动力学和应用
  • 批准号:
    RGPIN-2018-03761
  • 财政年份:
    2022
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Discovery Grants Program - Individual
Ergodic theory for conformal dynamics with applications to fractal geometry
共形动力学的遍历理论及其在分形几何中的应用
  • 批准号:
    21K03269
  • 财政年份:
    2021
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiplicative Ergodic Theory, Dynamics and Applications
乘法遍历理论、动力学和应用
  • 批准号:
    RGPIN-2018-03761
  • 财政年份:
    2021
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Discovery Grants Program - Individual
Multiplicative Ergodic Theory, Dynamics and Applications
乘法遍历理论、动力学和应用
  • 批准号:
    RGPIN-2018-03761
  • 财政年份:
    2020
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Discovery Grants Program - Individual
Ergodic Theory and Dynamics on Geometrically Infinite Spaces
几何无限空间的遍历理论和动力学
  • 批准号:
    2441471
  • 财政年份:
    2020
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Studentship
Multiplicative Ergodic Theory, Dynamics and Applications
乘法遍历理论、动力学和应用
  • 批准号:
    RGPIN-2018-03761
  • 财政年份:
    2019
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral Theory and Dynamics of Ergodic Schrodinger Operators
遍历薛定谔算子的谱理论和动力学
  • 批准号:
    1764154
  • 财政年份:
    2018
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Continuing Grant
Multiplicative Ergodic Theory, Dynamics and Applications
乘法遍历理论、动力学和应用
  • 批准号:
    RGPIN-2018-03761
  • 财政年份:
    2018
  • 资助金额:
    $ 16.7万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了