Integrable Systems and Random Matrices

可积系统和随机矩阵

基本信息

  • 批准号:
    0701026
  • 负责人:
  • 金额:
    $ 9.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2009-12-31
  • 项目状态:
    已结题

项目摘要

Abstract The proposal describes three sets of problems that the PI plans to investigate during the funding period. First, the PI will continue her study of the Ablowitz-Ladik (AL) equation, and address questions related to generalized orbits and multi-Hamiltonian structures for the finite system, as well as their connection to the analogous Toda lattice problems. She is also interested in finding the solution of AL with periodic boundary conditions, and in the study of critical phenomena for the NLS equation, viewed as a continuum limit of the AL equation. Second, building on her work on matrix models for general beta-ensembles, the PI plans to investigate the asymptotic properties of these models via the approach of Adler and van Moerbeke. This describes various eigenvalue statistics of the model as solutions of completely integrable systems; so far, only the cases with beta equal to 1, 2 or 4 have been studied, and general beta-ensembles have never been used in this context. Finally, the PI plans to investigate, jointly with P. Deift, the question of long-time asymptotics for solutions of the water-wave problem with rough data, in the small amplitude/long wavelength regime. In their investigation, they will treat the problem as a perturbation of a completely integrable PDE, the KdV equation, and use the associated scattering transform and Riemann-Hilbert techniques to control the perturbation. In particular, a first step in this project is the rigorous treatment of the long-time asymptotics for the KdV equation with Sobolev initial data. The research described in this proposal concerns classical problems in two of the most active fields in mathematics, random matrix theory and integrable systems. One of the most fascinating scientific developments over the last fifty years has been the discovery that a wide variety of mathematical and physical phenomena are modeled by the eigenvalues of a random matrix. In particular, random matrix theory describes the scattering of neutrons off large nuclei, the statistics of the zeros of the Riemann zeta function on the critical line in the complex plane, as well as problems in the "real world", such as the bus scheduling in the city of Cavalierness in Mexico, or distances between cars on the freeway. The goal of the PI's proposed research is to describe the asymptotic properties of certain matrix ensembles which model some of the phenomena described above. Another part of the proposal is concerned with studying the properties of two remarkable evolution equations: The first is the Ablowitz-Ladik (AL) equation, which is a discrete version of the well-known nonlinear Schroedinger equation (NLS). Beyond their theoretical interest, both of the aforementioned equations have numerous scientific applications, one of the most important of which is in optics. The PI approaches the study of the AL equation using the methods from the theories of orthogonal polynomials and completely integrable systems. Finally, the PI proposes to study the water wave equation in a regime which can be used to model tsunamis, by further developing the method of nonlinear stationary phase used in the treatment of Riemann-Hilbert problems.
该提案描述了投资促进局计划在筹资期间调查的三组问题。首先,PI将继续她对Ablowitz-Ladik(AL)方程的研究,并解决与有限系统的广义轨道和多哈密顿结构有关的问题,以及它们与类似的Toda晶格问题的联系。她还对寻找具有周期边界条件的AL的解以及研究NLS方程的临界现象感兴趣,NLS方程被视为AL方程的连续统极限。其次,在她对一般贝塔系综矩阵模型工作的基础上,PI计划通过Adler和van Moerbeke的方法来研究这些模型的渐近性质。这将模型的各种特征值统计描述为完全可积系统的解;到目前为止,只研究了β等于1、2或4的情况,而一般的贝塔系综从未在此背景下被使用过。最后,PI计划与P.Deift一起研究在小幅度/长波长条件下,具有粗糙数据的水波问题的解的长期渐近问题。在他们的研究中,他们将把这个问题视为一个完全可积的偏微分方程组的扰动,KdV方程,并使用相关的散射变换和Riemann-Hilbert技术来控制扰动。特别是,这个项目的第一步是严格处理具有Soblev初值的KdV方程的长时间渐近性。这项建议中描述的研究涉及数学中最活跃的两个领域--随机矩阵理论和可积系统中的经典问题。在过去的五十年里,最引人入胜的科学发展之一是发现了各种各样的数学和物理现象是由随机矩阵的特征值来模拟的。特别是,随机矩阵理论描述了大核子的散射,复平面上临界线上Riemann Zeta函数的零点的统计,以及“现实世界”中的问题,如墨西哥卡瓦列斯市的公交调度,或高速公路上汽车之间的距离。PI提出的研究的目标是描述某些矩阵集合的渐近性质,这些矩阵集合模拟了上述的一些现象。该提案的另一部分涉及研究两个显著的演化方程的性质:第一个是Ablowitz-Ladik(AL)方程,它是著名的非线性薛定谔方程(NLS)的离散版本。除了理论上的兴趣,上述两个方程都有许多科学应用,其中最重要的是在光学方面。PI利用正交多项式理论和完全可积系统的方法来研究AL方程。最后,PI建议通过进一步发展用于处理Riemann-Hilbert问题的非线性定相方法来研究可用于模拟海啸的区域中的水波方程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irina Nenciu其他文献

Essential Self-adjointness of Symmetric First-Order Differential Systems and Confinement of Dirac Particles on Bounded Domains in $${\mathbb {R}}^d$$
  • DOI:
    10.1007/s00220-021-04129-4
  • 发表时间:
    2021-08-09
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Gheorghe Nenciu;Irina Nenciu;Ryan Obermeyer
  • 通讯作者:
    Ryan Obermeyer
On Confining Potentials and Essential Self-Adjointness for Schrödinger Operators on Bounded Domains in $${\mathbb{R}}^n$$
  • DOI:
    10.1007/s00023-009-0412-1
  • 发表时间:
    2009-05-22
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Gheorghe Nenciu;Irina Nenciu
  • 通讯作者:
    Irina Nenciu

Irina Nenciu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irina Nenciu', 18)}}的其他基金

CAREER: Long-time asymptotics of completely integrable systems with connections to random matrices and partial differential equations
职业:与随机矩阵和偏微分方程相关的完全可积系统的长时间渐近
  • 批准号:
    1150427
  • 财政年份:
    2012
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Continuing Grant
Integrable Systems and Random Matrices
可积系统和随机矩阵
  • 批准号:
    0962703
  • 财政年份:
    2009
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Universality and semi-classical behavior in 2+1 dimensional integrable systems and random matrices
2 1 维可积系统和随机矩阵中的普遍性和半经典行为
  • 批准号:
    1733967
  • 财政年份:
    2016
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
Random Structures and Integrable Systems: Analysis and Applications
随机结构与可积系统:分析与应用
  • 批准号:
    1615921
  • 财政年份:
    2016
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
"Integrable Systems, Random Matrices and Random Processes"
“可积系统、随机矩阵和随机过程”
  • 批准号:
    45858-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics in Integrable Systems, Random Matrices and Random Processes, and Universality
可积系统中的渐进性、随机矩阵和随机过程以及普适性
  • 批准号:
    1500141
  • 财政年份:
    2015
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
Universality and semi-classical behavior in 2+1 dimensional integrable systems and random matrices
2 1 维可积系统和随机矩阵中的普遍性和半经典行为
  • 批准号:
    1401268
  • 财政年份:
    2014
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Discovery Grants Program - Individual
"Integrable Systems, Random Matrices and Random Processes"
“可积系统、随机矩阵和随机过程”
  • 批准号:
    45858-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Discovery Grants Program - Individual
Algebro-geometric methods in integrable systems, random matrices and spectral geometry
可积系统、随机矩阵和谱几何中的代数几何方法
  • 批准号:
    227154-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Discovery Grants Program - Individual
Conference on integrable systems, random matrix theory, and combinatorics
可积系统、随机矩阵理论和组合学会议
  • 批准号:
    1343901
  • 财政年份:
    2013
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了