CAREER: Long-time asymptotics of completely integrable systems with connections to random matrices and partial differential equations

职业:与随机矩阵和偏微分方程相关的完全可积系统的长时间渐近

基本信息

  • 批准号:
    1150427
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

The research side of this project focuses on understanding the long-time asymptotics for a diverse set of models from analysis and mathematical physics. In particular, the principal investigator will concentrate on three projects: (1) the continued study of a discrete version of the defocusing nonlinear Schroedinger equation, in particular, its connections with orthogonal polynomials on the unit circle, Lie-Poisson algebras, and its continuum limits; (2) the study of properties (e.g., expected diagonalization times) of certain random matrix ensembles when considered as initial data for integrable flows such as the Toda lattice and the QR-algorithm; and (3) the study, using Riemann-Hilbert methods, of long-time asymptotics for integrable systems, namely, the Toda lattice and the Korteweg-deVries equation, and for certain nonintegrable perturbations of these systems. The research topics of this project fall in the wide areas of mathematical physics and partial differential equations, with a particular emphasis on questions related to such well-established mathematical areas as completely integrable systems, random matrices, and their applications to certain numerical algorithms. Partial differential equations emerge in a variety of physical contexts as mathematical models for the time-evolution of certain physical quantities. A particular class of such equations are the so-called completely integrable systems, which are characterized by the fact they satisfy a sufficiently large (in a sense which can be made precise) number of conservation laws. The theory of completely integrable systems has a long and distinguished history. Over the past thirty years, in particular, interest in the field has been fueled on the one hand by the fact that many of the equations known to be completely integrable are obtained as models of fluid dynamics, and on the other hand by the close connections that have been discovered with many fields of pure mathematics, such as Lie algebras or symplectic and Poisson geometry. One of the fundamental goals of the current project is to expand and deepen the understanding of these connections and to widen the class of models to which the techniques of completely integrable theory apply. Hence one aims to describe as fully as possible the solutions to these models and hopefully to gain thereby insights into real-life phenomena. An essential part of the proposal is its educational component, which is centered around the organization of an annual summer school for advanced graduate students and recent Ph.D.'s on various topics of current research interest at the juncture of analysis, partial differential equations, and numerical analysis. All talks in the summer school will be delivered on preassigned articles by the participants. Beyond its broad mathematical impact, the project will allow the principal investigator to expand other educational activities as well. She will support the work of graduate students through advanced courses, seminars, and student research workshops, and she will work with local chapters of the Association for Women In Mathematics (AWM) in the Chicago area to promote the advancement of women in mathematical careers.
该项目的研究方面侧重于从分析和数学物理角度理解各种模型的长期渐近性。特别是,首席研究员将集中在三个项目:(1)散焦非线性薛定谔方程的离散版本的继续研究,特别是,它与单位圆上的正交多项式,李泊松代数及其连续极限的联系;(2)性质的研究(例如,期望对角化时间)的某些随机矩阵系综时,被视为初始数据的可积流,如户田格和QR算法;和(3)研究,使用黎曼-希尔伯特方法,长时间渐近的可积系统,即户田格和Korteweg-deVries方程,并为某些不可积扰动这些系统。该项目的研究主题属于数学物理和偏微分方程的广泛领域,特别强调与完全可积系统,随机矩阵及其在某些数值算法中的应用等成熟数学领域相关的问题。偏微分方程作为某些物理量随时间演化的数学模型出现在各种物理背景中。一类特殊的方程是所谓的完全可积系统,其特征在于它们满足足够大的(在某种意义上可以精确)数量的守恒律。完全可积系统的理论有着悠久而杰出的历史。特别是在过去的30年里,人们对这一领域的兴趣一方面是因为许多已知完全可积的方程都是作为流体动力学模型得到的,另一方面是因为人们发现它与许多纯数学领域(如李代数、辛几何和泊松几何)有密切的联系。当前项目的基本目标之一是扩展和加深对这些联系的理解,并扩大完全可积理论技术适用的模型类别。因此,我们的目标是尽可能充分地描述这些模型的解决方案,并希望借此获得对现实生活中现象的见解。该提案的一个重要组成部分是其教育部分,其中心是为高级研究生和最近的博士生组织年度暑期学校。的各种主题的当前研究兴趣的交界处的分析,偏微分方程和数值分析。暑期学校的所有讲座将由参与者根据预先指定的文章进行。除了其广泛的数学影响,该项目将允许首席研究员扩大其他教育活动以及。她将通过高级课程、研讨会和学生研究研讨会支持研究生的工作,并将与芝加哥地区女性数学协会(AWM)的当地分会合作,促进女性在数学领域的进步。职业生涯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irina Nenciu其他文献

Essential Self-adjointness of Symmetric First-Order Differential Systems and Confinement of Dirac Particles on Bounded Domains in $${\mathbb {R}}^d$$
  • DOI:
    10.1007/s00220-021-04129-4
  • 发表时间:
    2021-08-09
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Gheorghe Nenciu;Irina Nenciu;Ryan Obermeyer
  • 通讯作者:
    Ryan Obermeyer
On Confining Potentials and Essential Self-Adjointness for Schrödinger Operators on Bounded Domains in $${\mathbb{R}}^n$$
  • DOI:
    10.1007/s00023-009-0412-1
  • 发表时间:
    2009-05-22
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Gheorghe Nenciu;Irina Nenciu
  • 通讯作者:
    Irina Nenciu

Irina Nenciu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irina Nenciu', 18)}}的其他基金

Integrable Systems and Random Matrices
可积系统和随机矩阵
  • 批准号:
    0962703
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Integrable Systems and Random Matrices
可积系统和随机矩阵
  • 批准号:
    0701026
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Relm-β核转位激活EndMT促进肺动脉高压研究肺心汤预防 Long COVID 机制
  • 批准号:
    2025JJ90008
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
维生素D调控巨噬细胞极化在改善“Long COVID”中作用和机制的分子流行病学研究
  • 批准号:
    82373643
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
  • 批准号:
    LQ23H150003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Long-TSLP和Short-TSLP佐剂对新冠重组蛋白疫苗免疫应答的影响与作用机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
水稻LONG PANICLE1基因调控穗长的分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
long-TSLP诱导的M2型巨噬细胞调控肺成纤维细胞线粒体融合在哮喘气道重塑中的作用和机制
  • 批准号:
    81970032
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
LONG8及其互作蛋白LGIP1调控水稻籽粒大小的分子机理研究
  • 批准号:
    31871219
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
拟南芥微管结合蛋白Long Seed1调控种子大小的分子机制研究
  • 批准号:
    31770205
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
long-TSLP和short-TSLP调控肺成纤维细胞有氧糖酵解在哮喘气道重塑中的作用和机制研究
  • 批准号:
    81700034
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
哮喘气道上皮来源long-TSLP/short-TSLP失衡对气道重塑中成纤维细胞活化的分子机制研究
  • 批准号:
    81670026
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    ARC Future Fellowships
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
  • 批准号:
    2337666
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330759
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
  • 批准号:
    2348018
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
  • 批准号:
    2348908
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Physico-chemical effects on long-time fluid transport for CO2 geostorage
二氧化碳地质封存对长期流体输送的物理化学效应
  • 批准号:
    DP240100378
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330760
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
  • 批准号:
    2348164
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
  • 批准号:
    2239325
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Development of motion picture recording and measurement technique of femtosecond light pulse propagation with ultrahigh-temporal resolution and long recordable time and its application
超高时间分辨率、长记录时间的飞秒光脉冲传播运动图像记录与测量技术开发及应用
  • 批准号:
    23H01422
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了