Local Cohomology and Related Questions

局部上同调及相关问题

基本信息

  • 批准号:
    0701127
  • 负责人:
  • 金额:
    $ 40.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

A large part of Professor Lyubeznik's research on local cohomology over the last fifteen years has been devoted to the study of a number of striking connections with several quite diverse areas of mathematics, such as \'etale cohomology, topology of algebraic varieties, D-modules and others including the theory of tight closure and cohomology of groups. Professor Lyubeznik is going to continue to study these (and some other) questions by using methods that have been successful in the past as well as developing some new methods.It is always fascinating when a connection is discovered between two very different fields of mathematics because it can result in unexpected and significant discoveries inaccessible by the methods of only one of those two fields. This project is in the areas of mathematics known as Abstract Algebra and Algebraic Geometry, with connections to Topology. Abstract Algebra is a vast generalization of high school or college algebra, think of it as the algebra of many simultaneous polynomial equations in many variables. Algebraic Geometry gives a way of studying the solutions to such a system of equations as a geometric object. Topology is the study of those properties of geometric objects that don't change when the object is stretched or twisted, as if it were made of rubber. Over the last fifteen years "local cohomology,"an algebraic tool used in all three areas, has been shown to have some striking connections with a number of very different areas, including differential equations and others. These connections are mutually beneficial. For example, "D-modules," an algebraic version of differential equations, has helped establish some important algebraic properties of local cohomology, while local cohomology has helped prove some striking topological results. Even though considerable progress on this circle of ideas has been made, much remains to be done. Professor Lyubeznik is going to keep working on this circle of ideas.
Lyubeznik教授在过去15年中对局部上同调的研究中,有很大一部分是致力于研究与几个不同的数学领域之间的一些惊人联系,如\'etale上同调、代数簇拓扑、D-模等,包括紧闭理论和群的上同调。Lyubeznik教授将继续研究这些(和其他一些)问题,使用的方法已经在过去成功,以及开发一些新的方法。它总是迷人的,当发现之间的联系两个非常不同的数学领域,因为它可以导致意想不到的和重大的发现,无法通过这两个领域的方法只有一个。这个项目是在数学领域被称为抽象代数和代数几何,与拓扑连接。摘要代数是中学代数或大学代数的一个广泛推广,可以把它看作是多个多元多项式方程组的代数。代数几何提供了一种方法来研究解决这样一个系统的方程作为一个几何对象。拓扑学研究的是几何物体的性质,当物体被拉伸或扭曲时,这些性质不会改变,就好像它是由橡胶制成的一样。在过去的15年里,“局部上同调“,一个在所有三个领域都使用的代数工具,已经被证明与许多非常不同的领域有着惊人的联系,包括微分方程等。这些联系是互利的。例如,微分方程的代数形式“D-模”帮助建立了局部上同调的一些重要代数性质,而局部上同调帮助证明了一些惊人的拓扑结果。尽管在这方面取得了相当大的进展,但仍有许多工作要做。Lyubeznik教授将继续研究这个思想圈。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gennady Lyubeznik其他文献

An equation in abelian groups and multiple lattice tilings ofn-dimensional space
  • DOI:
    10.1007/bf01304780
  • 发表时间:
    1982-12-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Gennady Lyubeznik
  • 通讯作者:
    Gennady Lyubeznik
A generalization of Lichtenbaum's theorem on the cohomological dimension of algebraic varieties
  • DOI:
    10.1007/bf02571539
  • 发表时间:
    1991-12-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Gennady Lyubeznik
  • 通讯作者:
    Gennady Lyubeznik
A Survey of Problems and Results on the Number of Defining Equations
定义方程数的问题与结果综述
  • DOI:
    10.1007/978-1-4612-3660-3_20
  • 发表时间:
    1989
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gennady Lyubeznik
  • 通讯作者:
    Gennady Lyubeznik

Gennady Lyubeznik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gennady Lyubeznik', 18)}}的其他基金

Local Cohomology and Related Questions
局部上同调及相关问题
  • 批准号:
    1800355
  • 财政年份:
    2018
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Standard Grant
Local Cohomology and Related Questions
局部上同调及相关问题
  • 批准号:
    1500264
  • 财政年份:
    2015
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Continuing Grant
CONFERENCE ON D-MODULES IN COMMUTATIVE ALGEBRA
交换代数 D 模会议
  • 批准号:
    1506928
  • 财政年份:
    2015
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Standard Grant
Local Cohomology and Related Questions
局部上同调及相关问题
  • 批准号:
    1161783
  • 财政年份:
    2012
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Continuing Grant
Local Cohomology and Related Questions
局部上同调及相关问题
  • 批准号:
    0202176
  • 财政年份:
    2002
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Continuing Grant
Local Cohomology and Related Questions
局部上同调及相关问题
  • 批准号:
    9970277
  • 财政年份:
    1999
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Local Cohomology and Related Questions
数学科学:局部上同调及相关问题
  • 批准号:
    9401361
  • 财政年份:
    1994
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Number of Defining Equations, Local Cohomology
数学科学:定义方程的数量、局部上同调
  • 批准号:
    9103999
  • 财政年份:
    1991
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    8705834
  • 财政年份:
    1987
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Fellowship Award

相似海外基金

Local Cohomology and Related Questions
局部上同调及相关问题
  • 批准号:
    1800355
  • 财政年份:
    2018
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Standard Grant
Topological studies on cohomology of Artin groups and related topics
Artin群上同调的拓扑研究及相关话题
  • 批准号:
    17K05237
  • 财政年份:
    2017
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry and Cohomology of Arithmetic and Related Groups
算术及相关群的几何和上同调
  • 批准号:
    1509182
  • 财政年份:
    2015
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Standard Grant
Local Cohomology and Related Questions
局部上同调及相关问题
  • 批准号:
    1500264
  • 财政年份:
    2015
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Continuing Grant
Local Cohomology and Related Questions
局部上同调及相关问题
  • 批准号:
    1161783
  • 财政年份:
    2012
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Continuing Grant
Local cohomology, tight closure, and related questions
局部上同调、紧闭性及相关问题
  • 批准号:
    1162585
  • 财政年份:
    2012
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Standard Grant
Conference: Cohomology and Support in Representation Theory and Related Topics
会议:表示论及相关主题中的上同调和支持
  • 批准号:
    1201345
  • 财政年份:
    2012
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Standard Grant
Group cohomology, rational homotopy theory, and related topics
群上同调、有理同伦理论及相关主题
  • 批准号:
    1006819
  • 财政年份:
    2010
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Standard Grant
Tight Closure, Local Cohomology, and Related Questions
紧闭、局部上同调及相关问题
  • 批准号:
    0600819
  • 财政年份:
    2006
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Standard Grant
Research on quantum cohomology, Frobenius manifolds, and harmonic maps related to integrable systems
与可积系统相关的量子上同调、弗罗贝尼乌斯流形和调和图研究
  • 批准号:
    18204005
  • 财政年份:
    2006
  • 资助金额:
    $ 40.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了