Tight Closure, Local Cohomology, and Related Questions
紧闭、局部上同调及相关问题
基本信息
- 批准号:0600819
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research problems stem from long-standing questions and conjectures in commutative algebra. These are related to the tight closure theory of Hochster and Huneke, to the homological conjectures, and to the theory of local cohomology. The PI will pursue an approach to Hochster's monomial conjecture which lies at the intersection of these three topics. This conjecture is unresolved for rings which do not contain a field, such as those which arise in number theory. The proposed approach involves annihilating the elements of obstruction local cohomology modules by elements of arbitrarily low valuation. This idea has proved remarkably strong in the work of Heitmann, where he settled the monomial conjecture for rings of dimension up to three. Obtaining a description of such annihilators of local cohomology is a vast program, and the proposed research will focus on some concrete initial cases. In joint work with Uli Walther, the PI will work on Lyubeznik's conjecture that local cohomology modules of regular rings have finitely many associated prime ideals. This is now known in various cases due to the work of Huneke-Sharp and Lyubeznik, but remains unresolved for polynomial rings over the integers.Commutative algebra is a field closely related to algebraic geometry: while algebraic geometry focuses on the geometry of solutions sets of polynomial equations, in commutative algebra the main objects of study are functions on these solution sets. Most of the questions which will be investigated in the proposed research are questions about the existence of solutions for families of equations, and about the nature of the solution sets. Commutative algebra continues to develop a fascinating interaction with several branches of mathematics, and is becoming an increasingly valuable tool in engineering, coding theory, cryptography, and other applications of strategic interest.
拟议的研究问题源于可交换代数的长期问题和猜想。这些与Hochster和Huneke的紧密封闭理论有关,与同源猜想以及局部协同理论有关。 PI将追求一种方法,以实现这三个主题的交汇处。对于不包含一个磁场的环,例如数字理论中出现的环,该猜想尚未解决。提出的方法涉及通过任意低估的要素消灭障碍物局部共同体模块的要素。事实证明,这个想法在Heitmann的工作中非常强烈,在那里他解决了多达三个尺寸的单一猜想。获取对当地共同学的这种歼灭者的描述是一项庞大的计划,拟议的研究将重点放在一些具体的初始案例上。在与Uli Walther的联合合作中,PI将在Lyubeznik的猜想中工作,即常规环的当地同居模块具有有限的许多相关理想。 This is now known in various cases due to the work of Huneke-Sharp and Lyubeznik, but remains unresolved for polynomial rings over the integers.Commutative algebra is a field closely related to algebraic geometry: while algebraic geometry focuses on the geometry of solutions sets of polynomial equations, in commutative algebra the main objects of study are functions on these solution 套。拟议的研究中将研究的大多数问题是有关方程家族的解决方案以及解决方案集合的性质的问题。交换代数继续与数学的多个分支发展出令人着迷的互动,并已成为工程学,编码理论,密码学和其他战略兴趣应用中越来越有价值的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anurag Singh其他文献
Energy-Based DCT Approach for PPG Compression
用于 PPG 压缩的基于能量的 DCT 方法
- DOI:
10.1109/embc48229.2022.9871575 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shresth Gupta;Anurag Singh;Abhishek Sharma - 通讯作者:
Abhishek Sharma
Ensemble Learning with Hybrid Modelling for Multivariate AQI, PM2.5, and PM10 Forecasting in Mumbai
使用混合建模进行集成学习,用于孟买的多元 AQI、PM2.5 和 PM10 预测
- DOI:
10.1109/cset58993.2023.10346745 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Anurag Singh;Pratham Soni;Deepa Krishnan;Ishaan Potle - 通讯作者:
Ishaan Potle
Biclonal chronic lymphocytic leukemia presenting as skin lesion.
双克隆慢性淋巴细胞白血病表现为皮肤病变。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.1
- 作者:
Anurag Singh;S. Graziano;Neerja Vajpayee - 通讯作者:
Neerja Vajpayee
149 Synthetic Lethal Interaction of Combined BCL-XL and MEK Inhibition Promotes Tumor Regressions in KRAS-mutant Cancer Models
149 BCL-XL 和 MEK 联合抑制的合成致死相互作用促进 KRAS 突变癌症模型中的肿瘤消退
- DOI:
10.1016/s0959-8049(12)71947-0 - 发表时间:
2012 - 期刊:
- 影响因子:8.4
- 作者:
R. Corcoran;Katherine A. Cheng;A. Hata;A. Faber;Anurag Singh;J. Settleman;C. Benes;M. Mino‐Kenudson;Kwok;J. Engelman - 通讯作者:
J. Engelman
Anurag Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anurag Singh', 18)}}的其他基金
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
- 批准号:
2349623 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Local Cohomology, Differential Operators, and Determinantal Rings
局部上同调、微分算子和行列环
- 批准号:
2101671 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Determinantal Rings, Local Cohomology, and Tight Closure
行列式环、局部上同调和紧闭
- 批准号:
1801285 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Questions on Local Cohomology and Tight Closure Theory
关于局部上同调和紧闭理论的问题
- 批准号:
1500613 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Local cohomology, tight closure, and related questions
局部上同调、紧闭性及相关问题
- 批准号:
1162585 - 财政年份:2012
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
根癌农杆菌激活AtuLigM以关闭致病程序的机制研究
- 批准号:32300151
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关闭矿井次生沉陷的时序InSAR精细监测与采空区参数反演研究
- 批准号:42374020
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
关闭煤炭矿井地热储层时空演化特征及其长期能效评估
- 批准号:52374147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
原发性开角型青光眼中SIPA1L1促进小梁网细胞外基质蛋白累积升高眼压的作用机制
- 批准号:82371054
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
高水汽压亏缺下SlWRKY25调控SlAOS介导番茄叶片气孔关闭的作用机制
- 批准号:32302649
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Determinantal Rings, Local Cohomology, and Tight Closure
行列式环、局部上同调和紧闭
- 批准号:
1801285 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Questions on Local Cohomology and Tight Closure Theory
关于局部上同调和紧闭理论的问题
- 批准号:
1500613 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Common threads in the theories of Local Cohomology, D-modules and Tight Closure and their interactions
局部上同调、D 模和紧闭理论的共同点及其相互作用
- 批准号:
EP/J005436/1 - 财政年份:2012
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Local cohomology, tight closure, and related questions
局部上同调、紧闭性及相关问题
- 批准号:
1162585 - 财政年份:2012
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Study of Noetherian local rings in commutative algebra
交换代数中诺特局部环的研究
- 批准号:
19540060 - 财政年份:2007
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)