Distribution of rational points and automorphic forms
有理点的分布和自守形式
基本信息
- 批准号:0701753
- 负责人:
- 金额:$ 11.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI proposes four research projects, the first three of which are related to the study of rational points of bounded height on certain classes of algebraic varieties in the context of Manin's conjecture for Fano varieties. In continuation of his joint work with Shalika and Tschinkel, the PI plans to study the distribution of rational points of bounded height on spherical varieties, and also compactifications of certain non-reductive algebraic groups. The fourth project, joint with a student, will be concerned with the distribution of orders in number fields. The proposed research, especially in the first three projects, is part of a broader program of bringing recent advances in the theory of automorphic forms to bear on the questions of arithmetic interest. The research theme applies methods from the theory of automorphic forms and ideas from arithmetic geometry to the study of rational points on homogeneous varieties. The PI believes that this research will advance knowledge and understanding of the arithmetic of higher dimensional varieties.Diophantine equations have been of interest since the antiquities. Often times a fundamental question of interest is whether a given Diophantine equation has solutions, or, if does, how many. In this research we propose to study certain classes of Diophantine equations with large groups of symmetries. The type of Diophantine equations we consider in this research a priori have an infinite number of solutions, so one desires a better understanding of the distribution of solutions. We propose to give approximate formulae for the number of solutions with bounded "height" - where here, "height" is a convenient measure of arithmetic complexity. We have also included an educational program in the proposal. Our previous work on the subject has produced a large number of concrete research problems accessible to undergraduate and graduate students. It has also led to the writing of a textbook joint with Steven J. Miller. We plan to develop these pedagogical programs further in the form of writing an advanced graduate textbook..
PI提出了四个研究项目,其中前三个与在马宁法诺簇猜想的背景下研究某些代数簇上的有界高度有理点有关。在继续与 Shalika 和 Tschinkel 合作的过程中,PI 计划研究球簇上有界高度有理点的分布,以及某些非还原代数群的紧化。第四个项目与一名学生合作,将涉及数字字段中的订单分配。拟议的研究,特别是前三个项目,是一个更广泛计划的一部分,该计划将自守形式理论的最新进展应用于算术兴趣问题。该研究主题运用自守形式理论的方法和算术几何的思想来研究同质簇上的有理点。 PI 相信这项研究将增进对高维簇算术的认识和理解。丢番图方程自古以来就引起了人们的兴趣。很多时候,一个令人感兴趣的基本问题是给定的丢番图方程是否有解,或者如果有,有多少个。在这项研究中,我们建议研究具有大对称群的某些类别的丢番图方程。 我们在这项研究中先验考虑的丢番图方程类型有无限多个解,因此人们希望更好地理解解的分布。 我们建议给出具有有限“高度”的解的数量的近似公式 - 其中,“高度”是算术复杂性的便捷度量。我们还在提案中纳入了教育计划。我们之前在该主题上的工作已经产生了大量本科生和研究生可以理解的具体研究问题。它还导致与史蒂文·J·米勒联合撰写了一本教科书。我们计划以编写高级研究生教科书的形式进一步开发这些教学计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramin Takloo-Bighash其他文献
Multiplicative groups of fields and hereditarily irreducible polynomials
- DOI:
10.1016/j.jnt.2016.04.020 - 发表时间:
2016-11-01 - 期刊:
- 影响因子:
- 作者:
Alice Medvedev;Ramin Takloo-Bighash - 通讯作者:
Ramin Takloo-Bighash
Gauss Sums, Quadratic Reciprocity, and the Jacobi Symbol
- DOI:
10.1007/978-3-030-02604-2_7 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ramin Takloo-Bighash - 通讯作者:
Ramin Takloo-Bighash
Ramin Takloo-Bighash的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramin Takloo-Bighash', 18)}}的其他基金
Workshop Proposal: Expansion in linear groups
研讨会提案:线性群的扩展
- 批准号:
1519561 - 财政年份:2015
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Workshop Proposal: The Arithmetic of Elliptic Curves and Special Values of L-Functions, May 2-4, 2014
研讨会提案:椭圆曲线的算术和 L 函数的特殊值,2014 年 5 月 2-4 日
- 批准号:
1416887 - 财政年份:2014
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Workshop Proposal: Cohen-Lenstra Heuristics
研讨会提案:Cohen-Lenstra 启发法
- 批准号:
1308696 - 财政年份:2013
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Workshop Proposal: Elliptic Curves over Q(\sqrt{5})
研讨会提案:Q(sqrt{5}) 上的椭圆曲线
- 批准号:
1207199 - 财政年份:2012
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
Workshop Proposal: Noncongruence modular forms and Galois representations
研讨会提案:非同余模形式和伽罗瓦表示
- 批准号:
1105733 - 财政年份:2011
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant
相似国自然基金
基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
- 批准号:41804098
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
- 批准号:61072105
- 批准年份:2010
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
- 批准号:
RGPIN-2021-03821 - 财政年份:2022
- 资助金额:
$ 11.99万 - 项目类别:
Discovery Grants Program - Individual
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
- 批准号:
DGECR-2021-00218 - 财政年份:2021
- 资助金额:
$ 11.99万 - 项目类别:
Discovery Launch Supplement
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
- 批准号:
RGPIN-2021-03821 - 财政年份:2021
- 资助金额:
$ 11.99万 - 项目类别:
Discovery Grants Program - Individual
Rational Points and Asymptotics of Distribution
有理点和分布渐进
- 批准号:
2001200 - 财政年份:2020
- 资助金额:
$ 11.99万 - 项目类别:
Continuing Grant
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
- 批准号:
250196-2012 - 财政年份:2015
- 资助金额:
$ 11.99万 - 项目类别:
Discovery Grants Program - Individual
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
- 批准号:
250196-2012 - 财政年份:2014
- 资助金额:
$ 11.99万 - 项目类别:
Discovery Grants Program - Individual
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
- 批准号:
250196-2012 - 财政年份:2013
- 资助金额:
$ 11.99万 - 项目类别:
Discovery Grants Program - Individual
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
- 批准号:
250196-2012 - 财政年份:2012
- 资助金额:
$ 11.99万 - 项目类别:
Discovery Grants Program - Individual
STUDY OF THE HEIGHTS AND THE DISTRIBUTION OF RATIONAL POINTS ON ALGEBRAIC VARIETIES
代数簇上有理点的高度和分布研究
- 批准号:
10440002 - 财政年份:1998
- 资助金额:
$ 11.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Sciences: Kodaira Dimensions of Fiber Products and the Distribution of Rational Points
数学科学:纤维产品的小平维数和有理点的分布
- 批准号:
9505140 - 财政年份:1995
- 资助金额:
$ 11.99万 - 项目类别:
Standard Grant














{{item.name}}会员




