STUDY OF THE HEIGHTS AND THE DISTRIBUTION OF RATIONAL POINTS ON ALGEBRAIC VARIETIES
代数簇上有理点的高度和分布研究
基本信息
- 批准号:10440002
- 负责人:
- 金额:$ 4.35万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(A) Morita, Saito, Sato, Siho, and Kajiwara have studied the arithmetic of K3 surface, especially the Galois action on the second etale comomology, and have studied the field of the definition of the corresponding Kuga-Satake abelian variety.(B) Nakamura, Morita, Saito, Siho, Sato, and Kajiwara have studied the arithmetic of abelian varieties.(C) Oda, Ishida, Ogata have studied algebraic varieties which are toric or which are related to automorphic forms, and have studied arithmetic of these varieties.(D) Tanaka have studied Logic and, with Morita, have studied applications of Logic to Number Theory.(E) Hirata and Morita have studied the Baker method, and its application to the estimate of rational points on algebraic curves.
(A)Morita、Saito、Sato、Siho和Kajiwara研究了K3曲面的算术,特别是Galois在二次代数上的作用,并研究了相应的Kuga-Satake阿贝尔簇的定义领域。(B)Nakamura、Morita、Saito、Siho、Sato和Kajiwara研究了阿贝尔簇的算术。(C)Oda、Ishida、Ogata研究了环状或与自同构形有关的代数簇,并研究了这些簇的算法。(D)Tanaka研究了逻辑,并与Morita一起研究了这些簇的算法研究了逻辑在数论中的应用。(E)Hirata和Morita研究了Baker方法,及其在代数曲线上有理点估计中的应用。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tetsuo Nakamura: "Cyclic torsion of elliptic curves"Proceedings of the American Mathematical Society. 127. 1589-1595 (1999)
Tetsuo Nakamura:“椭圆曲线的循环扭转”美国数学会会刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takeshi Saito: "Weight-monodromy conjecture for l-adic representations associated to modular forms"the proceedings of the CRM summer school"The arithmetic and geometry of algebraic cycles", CRM-AMS, 2000. (印刷中).
Takeshi Saito:“与模形式相关的 l-adic 表示的权重单性猜想”CRM 暑期学校的程序“代数圈的算术和几何”,CRM-AMS,2000 年。(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takeshi Saito: "Weight-monodromy conjecture for l-adic representations associated to modular forms"the proceedings of the CRM summer school "The arithmetic and geometry of algebraic cycles",CRM-AMS ,2000. (印刷中).
Takeshi Saito:“与模形式相关的 l-adic 表示的重量单律猜想”CRM 暑期学校的会议记录“代数循环的算术和几何”,CRM-AMS,2000 年。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.-N.ISHIDA and F.KATO: "The strong rigulity theorem for non-Arclcimedecon uniformigation" Tohoku Mathematical Journal. 50. 537-555 (1998)
M.-N.ISHIDA 和 F.KATO:“非 Arccimedecon 均匀化的强严格性定理”东北数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORITA Yasuo其他文献
MORITA Yasuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORITA Yasuo', 18)}}的其他基金
Study of relations and applications of Arithmetic Geometry to branches of Algebra
算术几何与代数分支的关系及应用研究
- 批准号:
12440001 - 财政年份:2000
- 资助金额:
$ 4.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Co-Operative Research Algebra that is a Foundation of Mathematical Science
合作研究作为数学科学基础的代数
- 批准号:
04302001 - 财政年份:1992
- 资助金额:
$ 4.35万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
相似海外基金
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
- 批准号:
23H01067 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Rational points on modular curves, and the geometry of arithmetic statistics
模曲线上的有理点和算术统计的几何
- 批准号:
2302356 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别:
Continuing Grant
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
- 批准号:
RGPIN-2021-03821 - 财政年份:2022
- 资助金额:
$ 4.35万 - 项目类别:
Discovery Grants Program - Individual
Rationality, Rationality Index, and Rational Points
理性、理性指数和理性点
- 批准号:
2101434 - 财政年份:2021
- 资助金额:
$ 4.35万 - 项目类别:
Continuing Grant
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2021
- 资助金额:
$ 4.35万 - 项目类别:
Discovery Grants Program - Individual
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
- 批准号:
DGECR-2021-00218 - 财政年份:2021
- 资助金额:
$ 4.35万 - 项目类别:
Discovery Launch Supplement
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
- 批准号:
RGPIN-2021-03821 - 财政年份:2021
- 资助金额:
$ 4.35万 - 项目类别:
Discovery Grants Program - Individual
Research on rational points on moduli spaces over global fields
全局域模空间有理点研究
- 批准号:
21K03187 - 财政年份:2021
- 资助金额:
$ 4.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




