CCF: Capturing and Animating the Human Hand: Robust Recovery of Hand-Object Interactions
CCF:捕捉人手并为其制作动画:手与物体交互的稳健恢复
基本信息
- 批准号:0702443
- 负责人:
- 金额:$ 32.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CCF: Capturing and Animating the Human Hand: Robust Recovery of Hand-Object InteractionsNancy PollardAbstractThis research addresses the problem of accurately capturing motion of the human hand. Capturing human hand motion has proven exceptionally difficult for a variety of reasons, including the complexity of the joints in the hand, variation in hand anatomy from person to person, small ranges of motion, difficulties related to motion capture technology, and complex contact conditions while manipulating objects. However, the hand is critically important for communication, caring for others and ourselves, and using tools to alter the world around us. This research covers a suite of practical techniques needed to make accurate, subject-specific capture of the human hand possible using today's hardware. These techniques, along with the corresponding hand motion database, will make it possible to study the workings of the hand when performing all manner of tasks with captured data at a high level of detail and accuracy. This work should be useful in rehabilitation for measuring progress in improving range of motion and in accomplishing everyday activities. It should be useful for exploring potential designs for robot hands. And it should also be of great use for exploring the basis of dexterity itself.This research involves three specific subtopics. The first is robust algorithms for automatic extraction of subject specific skeletal models from motion capture data. We then observe that marker protocol affects the results a great deal. Thus, the second subtopic of this research is obtaining well founded recommendations for marker protocols for accurate data capture. Next we observe that cleaned motion capture data does not capture the contact conditions that are so important to understanding grasping. Thus, the third subtopic of this research is developing optimization algorithms to obtain physically plausible representations of observed motion, even in situations with complex, changing contacts between deformable tissues of the hand and a manipulated object.
国家合作框架:捕捉和动画的人手:手对象交互的鲁棒恢复南希Pollard摘要这项研究解决了准确捕捉人手的运动的问题。 由于各种原因,捕获人手运动已被证明是非常困难的,包括手中关节的复杂性、人手解剖结构的因人而异、小范围的运动、与运动捕获技术相关的困难以及操纵对象时的复杂接触条件。 然而,手对于沟通,关心他人和自己以及使用工具改变我们周围的世界至关重要。 这项研究涵盖了一套实用的技术,使准确的,特定于主题的捕捉人手可能使用今天的硬件。 这些技术连同相应的手部运动数据库沿着将使得在以高细节和精确度水平利用捕获的数据执行各种任务时研究手部的工作成为可能。这项工作应该是有用的康复措施,在改善运动范围和完成日常活动的进展。这对探索机器人手的潜在设计是有用的。本研究涉及三个具体的子课题。第一个是从运动捕捉数据中自动提取特定对象骨架模型的鲁棒算法。然后,我们观察到标记协议对结果有很大影响。因此,本研究的第二个子主题是获得有根据的建议,标记协议的准确数据采集。接下来,我们观察到,清洁的运动捕捉数据没有捕捉到接触条件,这是非常重要的理解把握。因此,本研究的第三个子主题是开发优化算法,以获得物理上合理的表示所观察到的运动,即使在复杂的情况下,不断变化的手和操纵对象的可变形组织之间的接触。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nancy Pollard其他文献
Nancy Pollard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nancy Pollard', 18)}}的其他基金
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
NRI: Design and Fabrication of Robot Hands for Dexterous Tasks
NRI:用于灵巧任务的机器人手的设计和制造
- 批准号:
1637853 - 财政年份:2016
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
CGV: Small: Simulation Motion Capture of Dexterous Manipulation
CGV:小:灵巧操作的模拟动作捕捉
- 批准号:
1218182 - 财政年份:2012
- 资助金额:
$ 32.5万 - 项目类别:
Continuing Grant
CGV: EAGER: Simulation-Based Manipulation Capture for Dexterous Character Animation
CGV:EAGER:基于模拟的灵巧角色动画操作捕捉
- 批准号:
1145640 - 财政年份:2011
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
II-EN: Robotic Equipment for the Investigation of Dexterous Two-Handed Manipulation
II-EN:用于研究灵巧双手操作的机器人设备
- 批准号:
0855171 - 财政年份:2009
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
RR:Collaborative Research Resources: Learning from Human Hands to Control Dexterous Robot Hands
RR:协作研究资源:学习人手来控制灵巧的机器人手
- 批准号:
0423546 - 财政年份:2004
- 资助金额:
$ 32.5万 - 项目类别:
Continuing Grant
CAREER: Quantifying Humanlike Enveloping Grasps
职业:量化类人包围抓握
- 批准号:
0343161 - 财政年份:2003
- 资助金额:
$ 32.5万 - 项目类别:
Continuing Grant
CAREER: Quantifying Humanlike Enveloping Grasps
职业:量化类人包围抓握
- 批准号:
0093072 - 财政年份:2001
- 资助金额:
$ 32.5万 - 项目类别:
Continuing Grant
相似海外基金
Capturing Oceanic Submesoscales, Stirring and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
- 批准号:
EP/Y014693/1 - 财政年份:2024
- 资助金额:
$ 32.5万 - 项目类别:
Research Grant
2DSPEC - Simulating two-dimensional electronic spectroscopy: Capturing the complexities of photo-induced excitedstate molecular processes
2DSPEC - 模拟二维电子光谱:捕获光诱导激发态分子过程的复杂性
- 批准号:
EP/Y037383/1 - 财政年份:2024
- 资助金额:
$ 32.5万 - 项目类别:
Fellowship
CAREER: Capturing the translation of wave climate to coastal change on rocky shorelines across scales
职业:在不同尺度的岩石海岸线上捕捉波浪气候对沿海变化的转化
- 批准号:
2339542 - 财政年份:2024
- 资助金额:
$ 32.5万 - 项目类别:
Continuing Grant
CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
- 批准号:
2336189 - 财政年份:2024
- 资助金额:
$ 32.5万 - 项目类别:
Continuing Grant
Capturing Oceanic Submesoscales, Stirring, and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
- 批准号:
MR/X035611/1 - 财政年份:2024
- 资助金额:
$ 32.5万 - 项目类别:
Fellowship
FMSG: Bio: RAMP-Bio-CAFe: Routing Advanced Manufacturing of BioPolymer(s): Capturing Agri-feedstocks in Cell free Factories
FMSG:生物:RAMP-Bio-CAFe:生物聚合物的先进制造路线:在无细胞工厂中捕获农业原料
- 批准号:
2328291 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Collaborative Research: BPE Track 2: Disability DCL - Capturing Narratives that Characterize Neurodivergent Strengths and Weaknesses
合作研究:BPE 轨道 2:残疾 DCL - 捕捉表征神经分歧优势和劣势的叙述
- 批准号:
2306831 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Collaborative Research: BPE Track 2: Disability DCL - Capturing Narratives that Characterize Neurodivergent Strengths and Weaknesses
合作研究:BPE 轨道 2:残疾 DCL - 捕捉表征神经分歧优势和劣势的叙述
- 批准号:
2306830 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Capturing forgotten voices: Syrian adolescents' experiences of displacement and humanitarian action in Jordan and Lebanon.
捕捉被遗忘的声音:叙利亚青少年在约旦和黎巴嫩的流离失所经历和人道主义行动。
- 批准号:
2885591 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Studentship
Capturing, quantifying, and understanding combinatorial effects in small molecule signaling
捕获、量化和理解小分子信号传导中的组合效应
- 批准号:
10684528 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别: