Collaborative Research: Model-Based and Model-Free Dimension Reduction with Applications to Bioinformatics
合作研究:基于模型和无模型的降维及其在生物信息学中的应用
基本信息
- 批准号:0704621
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is focused on sufficient dimension reduction (SDR), which comprises methods for reducing the dimension of the predictor vector X in reference to the response Y in regression or classification problems. In the last 10 to15 years a variety of SDR methods have been developed that do not require a regression modeland that exploit the conditional moments of X given Y. These methods have accrued a striking record of successful applications and have led to a variety of techniques. The investigators propose to introduce inverse reductive models that describe the stochastic structure of X given Y, and not Y given X as in traditionalregression. Preliminary results indicate that this will lead to significant advances in theory, methods and applications. Reductive models provides a unified perspective linking traditional methods such as principal components and various recent model-free inverse methods. In addition, reductive models can provide information bounds, which make it possible to evaluate and improve upon the performance of existing model-free methods in recognizable contexts.High-throughput technologies produce massive amounts of complex and interconnected data. More than ever before, understanding experimental evidence and exploring scientific hypotheses require methods to meaningfully reduce high-dimensional data. This is particularly the case for contemporary genomic sciences. Sequencing techniques, alignment algorithms, microarrays and other emerging experimental technologies generate information on genomes, myriads of novel functional elements within them, patterns of simultaneous expression for the thousands of genes they contain, and patterns of evolution across related species. The need to handle this growing body of information has spun a whole new discipline, Bioinformatics,at the very heart of which are indeed data reduction methods. In this proposal the investigators plan to study a class of inverse reductive models that unify and improve on existing dimension reduction methods, and that are capable of handling situations where the number of variables far exceed the number of subjects. Suchsituations are typical for genomic applications, and are difficult or impossible to study using existing methods.
这一建议的重点是充分降维(SDR),它包括参照回归或分类问题中的响应Y来降低预测向量X的维度的方法。在过去的10到15年里,各种SDR方法被开发出来,它们不需要回归模型,并且利用给定Y的X的条件矩。这些方法已经积累了惊人的成功应用记录,并导致了各种技术。研究人员建议引入逆约化模型,描述在给定Y的情况下X的随机结构,而不是像传统回归中那样在给定X的情况下描述Y的随机结构。初步结果表明,这将在理论、方法和应用方面取得重大进展。约化模型提供了一个统一的视角,将主成分等传统方法与各种最新的无模型逆方法联系起来。此外,简化模型可以提供信息边界,这使得评估和改进现有无模型方法在可识别环境下的性能成为可能。高通量技术产生大量复杂和相互关联的数据。理解实验证据和探索科学假说比以往任何时候都更需要有意义地减少高维数据的方法。对于当代基因组科学来说,情况尤其如此。测序技术、比对算法、微阵列和其他新兴的实验技术产生关于基因组的信息,其中包含无数新的功能元件,它们包含的数千个基因同时表达的模式,以及相关物种的进化模式。处理这些不断增长的信息量的需求催生了一门全新的学科--生物信息学,其核心确实是数据简化方法。在这项提议中,研究人员计划研究一类逆约简模型,这些模型统一并改进了现有的降维方法,并且能够处理变量数量远远超过对象数量的情况。这种情况是基因组应用的典型情况,很难或不可能用现有的方法进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bing Li其他文献
Feature Extraction for Electromagnetic Environment Complexity Classification Based on Non-Negative Matrix Factorization
基于非负矩阵分解的电磁环境复杂性分类特征提取
- DOI:
10.4028/www.scientific.net/amr.791-793.2100 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bing Li;Yang Zhen;Lei Zhang;Z. Fu - 通讯作者:
Z. Fu
Eupulcherol A, a triterpenoid with a new carbon skeleton from Euphorbia pulcherrima, and its anti-Alzheimer's disease bioactivity
Eupulcherol A,一种来自大戟的具有新碳骨架的三萜类化合物及其抗阿尔茨海默病生物活性
- DOI:
10.1039/c9ob02334h - 发表时间:
2020 - 期刊:
- 影响因子:3.2
- 作者:
Chun-Xue Yu;Ru-Yue Wang;Feng-Ming Qi;Pan-Jie Su;Yi-Fan Yu;Bing Li;Ye Zhao;De-Juan Zhi;Zhan-Xin Zhang;Dong-Qing Fei - 通讯作者:
Dong-Qing Fei
Pressure-Aware Control Layer Optimization for Flow-Based Microfluidic Biochips
基于流的微流控生物芯片的压力感知控制层优化
- DOI:
10.1109/tbcas.2017.2766210 - 发表时间:
2017-11 - 期刊:
- 影响因子:5.1
- 作者:
Qin Wang;Yue Xu;Shiliang Zuo;Hailong Yao;Tsung-Yi Ho;Bing Li;Ulf Schlichtmann;Yici Cai - 通讯作者:
Yici Cai
Studies on the interaction of naringin palmitate with lysozyme by spectroscopic analysis
光谱分析研究柚皮苷棕榈酸酯与溶菌酶的相互作用
- DOI:
10.1016/j.jff.2014.03.026 - 发表时间:
2014-05 - 期刊:
- 影响因子:5.6
- 作者:
Zhenbo Xu;Jianyu Su;Bing Li;Jianrong Huang - 通讯作者:
Jianrong Huang
Prediction of Passive UHF RFID's Discrimination Based on LVQ Neural Network Method
基于LVQ神经网络方法的无源UHF RFID辨识度预测
- DOI:
10.1109/wicom.2010.5601198 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Bing Li;Yigang He;Kai She;ZhouGuo Hou;Yanqing Zhu;Fengming Guo - 通讯作者:
Fengming Guo
Bing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bing Li', 18)}}的其他基金
Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
- 批准号:
2210775 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Functional Copula Model for Nonlinear and Non-Gaussian Functional Data Analysis: Graphical Models, Dimension Reduction, and Variable Selection
用于非线性和非高斯函数数据分析的函数 Copula 模型:图形模型、降维和变量选择
- 批准号:
1713078 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Non-gaussian graphical models via additive conditional independence and nonlinear dimension reduction
通过加性条件独立和非线性降维的非高斯图形模型
- 批准号:
1407537 - 财政年份:2014
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric conditional graphical models with applications to gene network analysis
合作研究:半参数条件图模型及其在基因网络分析中的应用
- 批准号:
1106815 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: A Paradigm for Dimension Reduction with Respect to a General Functional
协作研究:关于通用函数的降维范式
- 批准号:
0806058 - 财政年份:2008
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: Sufficient Dimension Reduction for High Dimensional Data with Applications in Bioinformatics
合作研究:高维数据的充分降维及其在生物信息学中的应用
- 批准号:
0405681 - 财政年份:2004
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Estimating Equations and Second-Order Theories
估计方程和二阶理论
- 批准号:
9626249 - 财政年份:1996
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Mathematical Sciences: Likelihood Functions for Estimating Equations
数学科学:估计方程的似然函数
- 批准号:
9306738 - 财政年份:1993
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307253 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307251 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307252 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Sharing Scientist Role Model Stories to Improve Equity and Success in Undergraduate STEM Education
合作研究:分享科学家榜样故事,以提高本科 STEM 教育的公平性和成功率
- 批准号:
2337064 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining the Role of the Antarctic Slope Current on Tracer Exchange at the Antarctic Margin using Model Hierarchies
合作研究:利用模型层次结构约束南极坡流对南极边缘示踪剂交换的作用
- 批准号:
2319828 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Constraining the Role of the Antarctic Slope Current on Tracer Exchange at the Antarctic Margin using Model Hierarchies
合作研究:利用模型层次结构约束南极坡流对南极边缘示踪剂交换的作用
- 批准号:
2319829 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant