Functional Copula Model for Nonlinear and Non-Gaussian Functional Data Analysis: Graphical Models, Dimension Reduction, and Variable Selection

用于非线性和非高斯函数数据分析的函数 Copula 模型:图形模型、降维和变量选择

基本信息

  • 批准号:
    1713078
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Multivariate functional data have become increasingly prevalent with the rise of big data. For example, EEG (Electroencephalography) and fMRI data, GPS tracking data collected by mobile phones, health data collected by smart wearables, some global economic data, and data collected from electric power networks, are all of this type. The key issue in analyzing such data is to discover interrelations among the different random functions describing them. Currently, this is typically done under the statistical assumption of normal (Gaussian) distributions as this leads to computationally simple and highly interpretable estimation procedures in many applications. The Gaussian assumption, however, is quite strong and is not satisfied in many applications. The main goal of this project is to relax the Gaussian assumption while retaining its computational simplicity and high interpretability. This is done by developing a notion of a copula Gaussian model -- a way in which multivariate functional data can be transformed to Gaussian distributed data. Such copula tactics have been extremely versatile in classical low-dimensional settings, combining parsimony aspects of multivariate Gaussian models with the flexibility of nonparametric models. Extending copula-based ideas to multivariate functional data will benefit statistical graphical models, statistical models for causal relations, nonlinear sufficient dimension reduction, and variable selection, bringing fresh insights and research opportunities to a young and dynamic field.This project proposes a novel functional copula model for non-Gaussian and nonlinear multivariate functional data analysis. The idea is to apply rank and quantile transformations to the coefficients of the Karhunen-Loeve expansions of the random functions. The functional Gaussian copula model greatly simplifies conditional dependence among different random functions in the expansion, as the conditional distribution is completely determined by the covariance operator among random functions. In particular, smoothing over functional spaces is not needed. At the same time, the model does not require Gaussian assumptions, which can be easily violated by functional data. These properties are very useful for constructing graphical models. The functional elliptical distribution copula model is useful for sufficient dimension reduction, because it is a convenient way to meet linearity requirements posed by many commonly used dimension reduction methods. Equipped with this parsimonious but flexible framework, the work plans to develop new methodologies for four areas of multivariate functional data analysis: (i) functional graphical models for undirected graphs; (ii) functional graphical models for causal graphs; (iii) functional sufficient dimension reduction; and (iv) variable selection for function on function regression. The work will study asymptotic properties of these new estimators under both the fixed and high dimensional setting, statistical inference procedures, order determination methods, and efficient algorithms to implement these methods.
Multivariate functional data have become increasingly prevalent with the rise of big data. For example, EEG (Electroencephalography) and fMRI data, GPS tracking data collected by mobile phones, health data collected by smart wearables, some global economic data, and data collected from electric power networks, are all of this type. The key issue in analyzing such data is to discover interrelations among the different random functions describing them. Currently, this is typically done under the statistical assumption of normal (Gaussian) distributions as this leads to computationally simple and highly interpretable estimation procedures in many applications. The Gaussian assumption, however, is quite strong and is not satisfied in many applications. The main goal of this project is to relax the Gaussian assumption while retaining its computational simplicity and high interpretability. This is done by developing a notion of a copula Gaussian model -- a way in which multivariate functional data can be transformed to Gaussian distributed data. Such copula tactics have been extremely versatile in classical low-dimensional settings, combining parsimony aspects of multivariate Gaussian models with the flexibility of nonparametric models. Extending copula-based ideas to multivariate functional data will benefit statistical graphical models, statistical models for causal relations, nonlinear sufficient dimension reduction, and variable selection, bringing fresh insights and research opportunities to a young and dynamic field.This project proposes a novel functional copula model for non-Gaussian and nonlinear multivariate functional data analysis. The idea is to apply rank and quantile transformations to the coefficients of the Karhunen-Loeve expansions of the random functions. The functional Gaussian copula model greatly simplifies conditional dependence among different random functions in the expansion, as the conditional distribution is completely determined by the covariance operator among random functions. In particular, smoothing over functional spaces is not needed. At the same time, the model does not require Gaussian assumptions, which can be easily violated by functional data. These properties are very useful for constructing graphical models. The functional elliptical distribution copula model is useful for sufficient dimension reduction, because it is a convenient way to meet linearity requirements posed by many commonly used dimension reduction methods. Equipped with this parsimonious but flexible framework, the work plans to develop new methodologies for four areas of multivariate functional data analysis: (i) functional graphical models for undirected graphs; (ii) functional graphical models for causal graphs; (iii) functional sufficient dimension reduction; and (iv) variable selection for function on function regression. The work will study asymptotic properties of these new estimators under both the fixed and high dimensional setting, statistical inference procedures, order determination methods, and efficient algorithms to implement these methods.

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
JADE for Tensor-Valued Observations
Linear operator-based statistical analysis: A useful paradigm for big data
A Revisit to Le Cam’s First Lemma
重温勒卡姆的第一引理
  • DOI:
    10.1007/s13171-020-00223-2
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Babu, G. Jogesh;Li, Bing
  • 通讯作者:
    Li, Bing
Copula Gaussian Graphical Models for Functional Data
On aggregate dimension reduction
关于聚合降维
  • DOI:
    10.5705/ss.202016.0188
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Wang, Qin;Yin, Xiangrong;Li, Bing;Tang, Zhihui
  • 通讯作者:
    Tang, Zhihui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bing Li其他文献

Feature Extraction for Electromagnetic Environment Complexity Classification Based on Non-Negative Matrix Factorization
基于非负矩阵分解的电磁环境复杂性分类特征提取
  • DOI:
    10.4028/www.scientific.net/amr.791-793.2100
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bing Li;Yang Zhen;Lei Zhang;Z. Fu
  • 通讯作者:
    Z. Fu
Eupulcherol A, a triterpenoid with a new carbon skeleton from Euphorbia pulcherrima, and its anti-Alzheimer's disease bioactivity
Eupulcherol A,一种来自大戟的具有新碳骨架的三萜类化合物及其抗阿尔茨海默病生物活性
  • DOI:
    10.1039/c9ob02334h
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Chun-Xue Yu;Ru-Yue Wang;Feng-Ming Qi;Pan-Jie Su;Yi-Fan Yu;Bing Li;Ye Zhao;De-Juan Zhi;Zhan-Xin Zhang;Dong-Qing Fei
  • 通讯作者:
    Dong-Qing Fei
Pressure-Aware Control Layer Optimization for Flow-Based Microfluidic Biochips
基于流的微流控生物芯片的压力感知控制层优化
Studies on the interaction of naringin palmitate with lysozyme by spectroscopic analysis
光谱分析研究柚皮苷棕榈酸酯与溶菌酶的相互作用
  • DOI:
    10.1016/j.jff.2014.03.026
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Zhenbo Xu;Jianyu Su;Bing Li;Jianrong Huang
  • 通讯作者:
    Jianrong Huang
Prediction of Passive UHF RFID's Discrimination Based on LVQ Neural Network Method
基于LVQ神经网络方法的无源UHF RFID辨识度预测

Bing Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bing Li', 18)}}的其他基金

Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
  • 批准号:
    2210775
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Non-gaussian graphical models via additive conditional independence and nonlinear dimension reduction
通过加性条件独立和非线性降维的非高斯图形模型
  • 批准号:
    1407537
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Semiparametric conditional graphical models with applications to gene network analysis
合作研究:半参数条件图模型及其在基因网络分析中的应用
  • 批准号:
    1106815
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Paradigm for Dimension Reduction with Respect to a General Functional
协作研究:关于通用函数的降维范式
  • 批准号:
    0806058
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Model-Based and Model-Free Dimension Reduction with Applications to Bioinformatics
合作研究:基于模型和无模型的降维及其在生物信息学中的应用
  • 批准号:
    0704621
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Sufficient Dimension Reduction for High Dimensional Data with Applications in Bioinformatics
合作研究:高维数据的充分降维及其在生物信息学中的应用
  • 批准号:
    0405681
  • 财政年份:
    2004
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
New Directions in Dimension Reduction
降维的新方向
  • 批准号:
    0204662
  • 财政年份:
    2002
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Estimating Equations and Second-Order Theories
估计方程和二阶理论
  • 批准号:
    9626249
  • 财政年份:
    1996
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Likelihood Functions for Estimating Equations
数学科学:估计方程的似然函数
  • 批准号:
    9306738
  • 财政年份:
    1993
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

基于高维动态藤 Copula 的洞庭湖流域水文气象复合 极端事件风险评估及气候驱动机制研究
  • 批准号:
    2024JJ5022
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Copula误差联合分布的高维回归模型的计量方法研究及其应用
  • 批准号:
    72373131
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
具有平滑结构变化的高维动态因子 copula 模型及其应用
  • 批准号:
    2022JJ40136
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
GAS Copula方法下我国银行业系统性风险测度及其溢出效应研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于 Copula 方法的城市多维致灾洪涝风险分析及灾防决策研究
  • 批准号:
    2022JJ40483
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
效用copula理论及其在群体决策中的应用
  • 批准号:
    72271113
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
基于刘维尔Copula和分层积分法的概率最优潮流计算研究
  • 批准号:
    12271155
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
Copula函数在宇宙学中的应用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
单指数Copula模型的估计和选择:理论与应用
  • 批准号:
    72273112
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
动态copula模型的计量检验及其在金融市场中的应用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Copula-Based Methods for Multivariate Survival Analysis
基于 Copula 的多元生存分析方法
  • 批准号:
    2210481
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Generalized linear mixed models for copula-based bivariate survival analysis
基于联结的二元生存分析的广义线性混合模型
  • 批准号:
    22K11948
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Copula modeling with generative neural networks
使用生成神经网络进行 Copula 建模
  • 批准号:
    RGPAS-2020-00093
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Copula-based Dependence Modeling for Computer and Communication Networks
计算机和通信网络基于 Copula 的依赖建模
  • 批准号:
    RGPIN-2018-03896
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Parsimonious high-dimensional and matrix-variate copula modeling
简约高维矩阵变量联结建模
  • 批准号:
    DGECR-2022-00447
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Launch Supplement
Parsimonious high-dimensional and matrix-variate copula modeling
简约高维矩阵变量联结建模
  • 批准号:
    RGPIN-2022-03867
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Copula modeling with generative neural networks
使用生成神经网络进行 Copula 建模
  • 批准号:
    RGPIN-2020-04897
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Mixed Semi-Continuous Copula Additive Regression Models with Applications in Insurance and Health Care
混合半连续 Copula 加性回归模型在保险和医疗保健中的应用
  • 批准号:
    EP/T033061/1
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Copula modeling with generative neural networks
使用生成神经网络进行 Copula 建模
  • 批准号:
    RGPIN-2020-04897
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Copula-based Dependence Modeling for Computer and Communication Networks
计算机和通信网络基于 Copula 的依赖建模
  • 批准号:
    RGPIN-2018-03896
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了