Collaborative Research: Sufficient Dimension Reduction for High Dimensional Data with Applications in Bioinformatics
合作研究:高维数据的充分降维及其在生物信息学中的应用
基本信息
- 批准号:0405681
- 负责人:
- 金额:$ 26.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract proposals: 0405360 and 0405681PIs: Cook & LiCOLLABORATIVE RESEARCH: Dimension Reduction with application to bioinformaticsAs represented in the existing literature, sufficient dimension reduction (SDR) encompasses model-free methods for linearly reducing the dimension of the predictor vector in regression and classification problems without loss of information. SDR methodology has a brief but striking record of success, although its inferential foundations are relatively narrow and the restriction to linear reductions can be limiting in some applications. The investigators and their co-authors expand the inferential foundations of SDR through the development of optimal methods within the context of linear reduction and the study of new nonlinear reduction methods. The new optimal reduction methods permit the investigators to derive model-free tests of conditional independence, which are roughly data-analytic equivalents of t-tests on coefficients in model-based linear regression. They emphasize bioinformatics applications in general and the analysis of data from high-throughput genomic technologies in particular.The computer revolution has produced an unprecedented capacity for data generation, processing and storage, with the consequence that data reduction is paramount in many research areas and business applications. For instance, genomic technology can produce measurements for thousands of genes across multiple tissue samples, and WalMart makes over 20 million transactions daily. The development of diagnostics for breast cancer based on fine needle aspiration can involve the study of numerous measurements on extracted cells across hundreds of patients. In response to this proliferation of information, the investigators and their colleagues study methods for reducing data to an essential core. Their approach is unique because their overarching goal is reduction without loss of information on the issues under consideration. In the development of diagnostics for breast cancer, this goal translates into reducing numerous cell measurements to an index that can be used to classify a breast mass as malignant or benign without loss of information, allowing the physician to present a more informed recommendation to the patient.
摘要提案:0405360和0405681 PI:Cook& Li合作研究:降维及其在生物信息学中的应用如现有文献所示,充分降维(SDR)包括无模型方法,用于线性降低回归和分类问题中预测向量的维数,而不会丢失信息。 特别提款权方法有一个简短但引人注目的成功记录,尽管其推理基础相对狭窄,并且在某些应用中对线性减少的限制可能有限。 研究人员和他们的合著者通过在线性约简和新的非线性约简方法的研究范围内开发最优方法来扩展SDR的推理基础。 新的最优降阶方法允许研究人员推导出条件独立性的无模型检验,这大致相当于基于模型的线性回归系数的t检验的数据分析。 它们一般强调生物信息学的应用,特别强调对高通量基因组技术数据的分析,计算机革命产生了前所未有的数据生成、处理和存储能力,其结果是,数据简化在许多研究领域和商业应用中至关重要。 例如,基因组技术可以测量多个组织样本中的数千个基因,沃尔玛每天的交易量超过2000万笔。基于细针抽吸的乳腺癌诊断的发展可能涉及对数百名患者的提取细胞的大量测量的研究。为了应对这种信息的扩散,研究人员和他们的同事研究了将数据减少到基本核心的方法。他们的方法是独特的,因为他们的总体目标是减少而不丢失有关所审议问题的信息。 在乳腺癌诊断的发展中,这一目标转化为将大量细胞测量结果减少到可用于将乳腺肿块分类为恶性或良性而不丢失信息的指数,从而允许医生向患者提供更明智的建议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bing Li其他文献
Feature Extraction for Electromagnetic Environment Complexity Classification Based on Non-Negative Matrix Factorization
基于非负矩阵分解的电磁环境复杂性分类特征提取
- DOI:
10.4028/www.scientific.net/amr.791-793.2100 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bing Li;Yang Zhen;Lei Zhang;Z. Fu - 通讯作者:
Z. Fu
Eupulcherol A, a triterpenoid with a new carbon skeleton from Euphorbia pulcherrima, and its anti-Alzheimer's disease bioactivity
Eupulcherol A,一种来自大戟的具有新碳骨架的三萜类化合物及其抗阿尔茨海默病生物活性
- DOI:
10.1039/c9ob02334h - 发表时间:
2020 - 期刊:
- 影响因子:3.2
- 作者:
Chun-Xue Yu;Ru-Yue Wang;Feng-Ming Qi;Pan-Jie Su;Yi-Fan Yu;Bing Li;Ye Zhao;De-Juan Zhi;Zhan-Xin Zhang;Dong-Qing Fei - 通讯作者:
Dong-Qing Fei
Pressure-Aware Control Layer Optimization for Flow-Based Microfluidic Biochips
基于流的微流控生物芯片的压力感知控制层优化
- DOI:
10.1109/tbcas.2017.2766210 - 发表时间:
2017-11 - 期刊:
- 影响因子:5.1
- 作者:
Qin Wang;Yue Xu;Shiliang Zuo;Hailong Yao;Tsung-Yi Ho;Bing Li;Ulf Schlichtmann;Yici Cai - 通讯作者:
Yici Cai
Studies on the interaction of naringin palmitate with lysozyme by spectroscopic analysis
光谱分析研究柚皮苷棕榈酸酯与溶菌酶的相互作用
- DOI:
10.1016/j.jff.2014.03.026 - 发表时间:
2014-05 - 期刊:
- 影响因子:5.6
- 作者:
Zhenbo Xu;Jianyu Su;Bing Li;Jianrong Huang - 通讯作者:
Jianrong Huang
Prediction of Passive UHF RFID's Discrimination Based on LVQ Neural Network Method
基于LVQ神经网络方法的无源UHF RFID辨识度预测
- DOI:
10.1109/wicom.2010.5601198 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Bing Li;Yigang He;Kai She;ZhouGuo Hou;Yanqing Zhu;Fengming Guo - 通讯作者:
Fengming Guo
Bing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bing Li', 18)}}的其他基金
Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
- 批准号:
2210775 - 财政年份:2022
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Functional Copula Model for Nonlinear and Non-Gaussian Functional Data Analysis: Graphical Models, Dimension Reduction, and Variable Selection
用于非线性和非高斯函数数据分析的函数 Copula 模型:图形模型、降维和变量选择
- 批准号:
1713078 - 财政年份:2017
- 资助金额:
$ 26.9万 - 项目类别:
Continuing Grant
Non-gaussian graphical models via additive conditional independence and nonlinear dimension reduction
通过加性条件独立和非线性降维的非高斯图形模型
- 批准号:
1407537 - 财政年份:2014
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric conditional graphical models with applications to gene network analysis
合作研究:半参数条件图模型及其在基因网络分析中的应用
- 批准号:
1106815 - 财政年份:2011
- 资助金额:
$ 26.9万 - 项目类别:
Continuing Grant
Collaborative Research: A Paradigm for Dimension Reduction with Respect to a General Functional
协作研究:关于通用函数的降维范式
- 批准号:
0806058 - 财政年份:2008
- 资助金额:
$ 26.9万 - 项目类别:
Continuing Grant
Collaborative Research: Model-Based and Model-Free Dimension Reduction with Applications to Bioinformatics
合作研究:基于模型和无模型的降维及其在生物信息学中的应用
- 批准号:
0704621 - 财政年份:2007
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Estimating Equations and Second-Order Theories
估计方程和二阶理论
- 批准号:
9626249 - 财政年份:1996
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Likelihood Functions for Estimating Equations
数学科学:估计方程的似然函数
- 批准号:
9306738 - 财政年份:1993
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
CyberCorps 服务奖学金:培养具有研究意识的网络领导者
- 批准号:
2336409 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Continuing Grant