Estimating Equations and Second-Order Theories
估计方程和二阶理论
基本信息
- 批准号:9626249
- 负责人:
- 金额:$ 6.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-01 至 1999-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS 96-266249 Li The research is focused on two problems related to second order theories: one on the assessment of accuracy and the other on the refinement of estimating equations. The accuracy of an estimate is determined partly by the quality of the estimator and partly by chance. Traditionally the chance element was accounted for by the conditional or the Bayesian approach, which require an ancillary or a prior distribution. However, the chance element can exist without either. The first part of the research tackles this problem by direct estimation of loss via asymptotic expansions and geometric analyses. A particular result obtained in this direction is that the inverted observed information best approximates the squared error. The second part of the research is concerned with improving the second-order accuracy of an estimating equation. Two methods were previously proposed, but they are inapplicable to an important type of situations, which motivates this project. In addition, several previously unknown properties of estimating equations are investigated in the light of their analogy with the second-order properties of the classical maximum likelihood estimator. This research will yield deeper understanding and more effective use of semiparametric methods. %%% The recent advances in science, particularly in medical, biological, sociological, and ecological studies, have drastically increased the scale and complexity of data sets. This change, hand in hand with the ever increasing computer power, gives new challenges to traditional statistical methodologies. One area of studies that these challenges have brought about is that of estimating equations, which is the focus of the present research. Estimating equations allow scientists to model directly the parameters which are of the most interest without making excessive assumptions (as traditional methods often do), whose violat ions would impair the inference about the parameters. Estimating equations are especially useful for data sets with complicated dependence structures, such as longitudinal studies and the studies of plants scattered in a natural environment. The studies of estimating equations have undergone vigorous advances during the past decades, most of which, however, are concerned with what might be called the coarser-level aspects (or first-order aspects). Whereas the studies of the finer-level aspects (or second-order properties) have just begun to catch up. The second-order aspects of estimating equations are systematically investigated in the present research.
DMS 96-266249 Li 研究的重点是与二阶理论相关的两个问题: 一个是关于准确性的评估,另一个是关于估计的细化 方程 估计的准确性部分取决于估计量的质量,部分取决于偶然性。 传统上,机会元素是由条件或贝叶斯方法,这需要一个辅助或先验分布占。然而,机会元素可以在没有任何一个的情况下存在。 研究的第一部分通过渐近展开和几何分析直接估计损失来解决这个问题。 在这个方向上获得的一个特殊结果是,反演的观测信息最接近平方误差。 第二部分研究提高二阶精度 一个估计方程。 以前提出了两种方法,但它们不适用于一种重要类型的情况,这激发了这个项目。 此外,一些以前未知的性质估计 方程进行了研究,根据他们的类比与 经典极大似然估计的二阶性质。 这项研究将使半参数方法得到更深入的理解和更有效的使用。 %%% 科学的最新进展,特别是在医学、生物学、社会学和生态学研究方面,大大增加了数据集的规模和复杂性。 这一变化与计算机能力的不断提高相结合,对传统的统计方法提出了新的挑战。 这些挑战带来的一个研究领域是估计方程,这是目前研究的重点。估计方程使科学家能够直接对最感兴趣的参数进行建模,而不需要做过多的假设(如传统方法经常做的那样),这些假设的违反会损害对参数的推断。 估计方程对于具有复杂相关结构的数据集特别有用,例如纵向研究和对自然环境中分散的植物的研究。 估计方程的研究在过去的几十年里经历了蓬勃的发展,其中大多数,然而,可能是所谓的粗层次方面(或一阶方面)的关注。 而对更细层次的方面(或二阶性质)的研究才刚刚开始。本文系统地研究了估计方程的二阶性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bing Li其他文献
Feature Extraction for Electromagnetic Environment Complexity Classification Based on Non-Negative Matrix Factorization
基于非负矩阵分解的电磁环境复杂性分类特征提取
- DOI:
10.4028/www.scientific.net/amr.791-793.2100 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bing Li;Yang Zhen;Lei Zhang;Z. Fu - 通讯作者:
Z. Fu
Eupulcherol A, a triterpenoid with a new carbon skeleton from Euphorbia pulcherrima, and its anti-Alzheimer's disease bioactivity
Eupulcherol A,一种来自大戟的具有新碳骨架的三萜类化合物及其抗阿尔茨海默病生物活性
- DOI:
10.1039/c9ob02334h - 发表时间:
2020 - 期刊:
- 影响因子:3.2
- 作者:
Chun-Xue Yu;Ru-Yue Wang;Feng-Ming Qi;Pan-Jie Su;Yi-Fan Yu;Bing Li;Ye Zhao;De-Juan Zhi;Zhan-Xin Zhang;Dong-Qing Fei - 通讯作者:
Dong-Qing Fei
Pressure-Aware Control Layer Optimization for Flow-Based Microfluidic Biochips
基于流的微流控生物芯片的压力感知控制层优化
- DOI:
10.1109/tbcas.2017.2766210 - 发表时间:
2017-11 - 期刊:
- 影响因子:5.1
- 作者:
Qin Wang;Yue Xu;Shiliang Zuo;Hailong Yao;Tsung-Yi Ho;Bing Li;Ulf Schlichtmann;Yici Cai - 通讯作者:
Yici Cai
Studies on the interaction of naringin palmitate with lysozyme by spectroscopic analysis
光谱分析研究柚皮苷棕榈酸酯与溶菌酶的相互作用
- DOI:
10.1016/j.jff.2014.03.026 - 发表时间:
2014-05 - 期刊:
- 影响因子:5.6
- 作者:
Zhenbo Xu;Jianyu Su;Bing Li;Jianrong Huang - 通讯作者:
Jianrong Huang
Prediction of Passive UHF RFID's Discrimination Based on LVQ Neural Network Method
基于LVQ神经网络方法的无源UHF RFID辨识度预测
- DOI:
10.1109/wicom.2010.5601198 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Bing Li;Yigang He;Kai She;ZhouGuo Hou;Yanqing Zhu;Fengming Guo - 通讯作者:
Fengming Guo
Bing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bing Li', 18)}}的其他基金
Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
- 批准号:
2210775 - 财政年份:2022
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
Functional Copula Model for Nonlinear and Non-Gaussian Functional Data Analysis: Graphical Models, Dimension Reduction, and Variable Selection
用于非线性和非高斯函数数据分析的函数 Copula 模型:图形模型、降维和变量选择
- 批准号:
1713078 - 财政年份:2017
- 资助金额:
$ 6.3万 - 项目类别:
Continuing Grant
Non-gaussian graphical models via additive conditional independence and nonlinear dimension reduction
通过加性条件独立和非线性降维的非高斯图形模型
- 批准号:
1407537 - 财政年份:2014
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric conditional graphical models with applications to gene network analysis
合作研究:半参数条件图模型及其在基因网络分析中的应用
- 批准号:
1106815 - 财政年份:2011
- 资助金额:
$ 6.3万 - 项目类别:
Continuing Grant
Collaborative Research: A Paradigm for Dimension Reduction with Respect to a General Functional
协作研究:关于通用函数的降维范式
- 批准号:
0806058 - 财政年份:2008
- 资助金额:
$ 6.3万 - 项目类别:
Continuing Grant
Collaborative Research: Model-Based and Model-Free Dimension Reduction with Applications to Bioinformatics
合作研究:基于模型和无模型的降维及其在生物信息学中的应用
- 批准号:
0704621 - 财政年份:2007
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
Collaborative Research: Sufficient Dimension Reduction for High Dimensional Data with Applications in Bioinformatics
合作研究:高维数据的充分降维及其在生物信息学中的应用
- 批准号:
0405681 - 财政年份:2004
- 资助金额:
$ 6.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Likelihood Functions for Estimating Equations
数学科学:估计方程的似然函数
- 批准号:
9306738 - 财政年份:1993
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
相似海外基金
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2342407 - 财政年份:2024
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
Geometric Properties of Second Order Elliptic Partial Differential Equations
二阶椭圆偏微分方程的几何性质
- 批准号:
2123224 - 财政年份:2021
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
Geometric Properties of Second Order Elliptic Partial Differential Equations
二阶椭圆偏微分方程的几何性质
- 批准号:
1763179 - 财政年份:2018
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
- 批准号:
1620168 - 财政年份:2016
- 资助金额:
$ 6.3万 - 项目类别:
Continuing Grant
Novel Discontinuous Galerkin Finite Element Methods for Second Order Fully Nonlinear Equations and High Frequency Wave Equations
二阶完全非线性方程和高频波动方程的新型间断伽辽金有限元方法
- 批准号:
1318486 - 财政年份:2013
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
Development of frequency methods for analysis and design of linear continuous periodic systems with delay by unifying the concepts of parametric transfer matrices and the calculus of Fredholm integral equations of the second kind
通过统一参数传递矩阵的概念和第二类 Fredholm 积分方程的计算,开发用于分析和设计时滞线性连续周期系统的频率方法
- 批准号:
215929929 - 财政年份:2012
- 资助金额:
$ 6.3万 - 项目类别:
Research Grants
Numerical Methods and Algorithms for Fully Nonlinear Second Order Evolution Equations with Applications
全非线性二阶演化方程的数值方法和算法及其应用
- 批准号:
1016173 - 财政年份:2010
- 资助金额:
$ 6.3万 - 项目类别:
Continuing Grant
Numerical Methods and Algorithms for Second Order Fully Nonlinear Partial Differential Equations
二阶完全非线性偏微分方程的数值方法和算法
- 批准号:
0710831 - 财政年份:2007
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
The Second IMACS International Conference on: Nonlinear Evolution Equations and Wave Phenomena: Computation and Theory
第二届 IMACS 国际会议:非线性演化方程和波动现象:计算和理论
- 批准号:
0084505 - 财政年份:2001
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
Qualitative Properties of Solutions to Second Order Elliptic and Parabolic Differential Equations
二阶椭圆和抛物型微分方程解的定性性质
- 批准号:
9971052 - 财政年份:1999
- 资助金额:
$ 6.3万 - 项目类别:
Continuing Grant














{{item.name}}会员




