New Stochastic Processes, Partial Differential Equations, and Control Problems Arising in Models of Mechanical Structures Subjected to Vibrations
振动机械结构模型中出现的新随机过程、偏微分方程和控制问题
基本信息
- 批准号:0705247
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-15 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns the study of randomly excited nonlinear dynamical systems with memory. Such systems represent viable models for predicting the response of mechanical structures when stressed beyond the elastic limit. A new mathematical approach is considered: stochastic variational inequalities (SVI). The stochastic process solutions of the underlying SVI are essentially continuous diffusion processes with degeneracies and state constraints, for which governing equations can be formulated to describe the evolution in time of their probability distributions. Dissipativity of the system can be used to show existence of the corresponding invariant measure. The uniqueness of this invariant measure and the ergodic property are conjectured to be true for classes of hysteretic systems appearing in applications. Based on the availability of the probability distribution as the solution of the SVI, many practical issues concerning reliability of structures modeled by hysteretic systems can be answered in a systematic fashion. Control problems for SVI are also considered, such as finding the lowest energy input excitation (the so-called critical excitation) that drives the system between prescribed initial and final states within a given time span. Obtaining necessary conditions is a non trivial problem in view of lack of differentiability of the state equations, i.e., optimality conditions are needed for non-smooth dynamical systems. The use of approximate penalty techniques (to remove the constraints) leads to the consideration of degenerate diffusion processes on infinite domains, with challenging questions concerning ergodicity of the corresponding process.The nonlinear behavior of mechanical structures subjected to vibrations is a major concern in designing buildings or plants that must resist earthquakes, ocean waves, the wind, and other random excitations. Many attempts have been made in the past decades, with some successes, in defining universally acceptable safety standards corresponding to potentially occurring environmental loadings. However, the analysis of the underlying mathematics of models involved in these problems is far from complete. The accumulated fatigue that explains the ruin of structures is a nonlinear phenomenon with memory. By providing a thorough understanding of stochastic processes related to the responses of nonlinear systems described by stochastic variational inequalities, this research will establish a solid theoretical foundation for the study of system reliability.
本计画系关于随机激励之记忆非线性动力系统之研究。 这样的系统代表可行的模型,用于预测机械结构的响应时,应力超过弹性极限。 提出了一种新的数学方法:随机变分不等式(SVI)。 潜在的SVI的随机过程的解决方案,本质上是连续的扩散过程退化和状态约束,其中的控制方程可以制定描述其概率分布的时间演变。 系统的耗散性可以用来证明相应的不变测度的存在性。 证明了该不变测度的唯一性和遍历性对于应用中出现的一类滞回系统是成立的。 基于概率分布作为SVI的解的可用性,可以以系统的方式回答关于由滞后系统建模的结构的可靠性的许多实际问题。 也被认为是SVI的控制问题,如寻找最低的能量输入激励(所谓的临界激励),驱动系统在规定的初始和最终状态之间在给定的时间跨度。 鉴于状态方程缺乏可微性,获得必要条件是一个重要的问题,即,非光滑动力系统需要最优性条件。 使用近似罚技术(去除约束)导致考虑无限域上的退化扩散过程,并对相应过程的遍历性提出挑战性问题。受到振动的机械结构的非线性行为是设计必须抵抗地震、海浪、风和其他随机激励的建筑物或工厂时的主要关注点。 在过去几十年中,在确定与可能发生的环境负荷相对应的普遍可接受的安全标准方面进行了许多尝试,并取得了一些成功。 然而,这些问题所涉及的模型的基本数学分析还远远没有完成。 结构的累积疲劳是一种具有记忆性的非线性现象。 通过对由随机变分不等式描述的非线性系统响应的随机过程的深入理解,为系统可靠性的研究奠定了坚实的理论基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alain Bensoussan其他文献
The optimal control with a general mean reverting inventory control
一般均值回归库存控制的最优控制
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
JINGZHEN LIU;Ka Fai Cedric Yiu;Alain Bensoussan - 通讯作者:
Alain Bensoussan
Extended Mean Field Type Control Theory: A Master Equation Approach with Some Applications
- DOI:
10.1007/s10957-025-02776-4 - 发表时间:
2025-07-14 - 期刊:
- 影响因子:1.500
- 作者:
Alain Bensoussan;Joohyun Kim;Sheung Chi Phillip Yam - 通讯作者:
Sheung Chi Phillip Yam
THE OPTIMAL MEAN VARIANCE PROBLEMWITH INFLATION
通货膨胀的最优均值方差问题
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jingzhen Liu;Ka Fai Cedric Yiu;Alain Bensoussan - 通讯作者:
Alain Bensoussan
Ergodic control for a mean reverting inventory model
均值回归库存模型的遍历控制
- DOI:
10.3934/jimo.2017079 - 发表时间:
2017-09 - 期刊:
- 影响因子:1.3
- 作者:
Jingzhen Liu;Ka Fai Cedric Yiu;Alain Bensoussan - 通讯作者:
Alain Bensoussan
h3 class=gs_rt style=font-family:Tahoma;font-weight:normal;color:#222222;font-size:16px;background-color:#FFFFFF;a href=http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2412983 target=_blank
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alain Bensoussan;Shaokuan Chen;Suresh Sethi - 通讯作者:
Suresh Sethi
Alain Bensoussan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alain Bensoussan', 18)}}的其他基金
New Extensions of the Master Equation in Mean Field Control Theory and Applications
平均场控制理论与应用主方程的新推广
- 批准号:
1905449 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
New Problems in Mean Field Control Theory
平均场控制理论的新问题
- 批准号:
1612880 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Mean Field Games, Mean Field Type Control and Extensions
平均场游戏、平均场类型控制和扩展
- 批准号:
1303775 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Inventory Control with Partial Observations and Inspections
通过部分观察和检查进行库存控制
- 批准号:
0509278 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New Frontiers in Statistics for Stochastic Processes: SPDEs and High-Dimensionality
随机过程统计新前沿:SPDE 和高维
- 批准号:
441612579 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Heisenberg Grants
Asymptotic Results for Stochastic Processes via New Projective Methods
通过新投影方法得出随机过程的渐近结果
- 批准号:
2054598 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
New Methodologies for Markov Decision Processes and Stochastic Games Motivated by Inventory Control
库存控制驱动的马尔可夫决策过程和随机博弈的新方法
- 批准号:
1636193 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
New statistical methods for stochastic processes
随机过程的新统计方法
- 批准号:
268709653 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Fellowships
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Extremes of stochastic processes and random fields: new directions
随机过程和随机场的极端:新方向
- 批准号:
1005903 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant