Asymptotic Results for Stochastic Processes via New Projective Methods

通过新投影方法得出随机过程的渐近结果

基本信息

  • 批准号:
    2054598
  • 负责人:
  • 金额:
    $ 30.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

An important area of research in probability theory, with rich applications in statistics, is the asymptotic theory of stochastic processes, also known as large sample theory. This is a framework to assess properties of estimators and statistical tests, necessary for a high level of confidence in predictions. The large sample theory, first developed for independent variables, is considerably more difficult when data is dependent, that is, when quantities have dependencies that relate their values. The questions become even more challenging when the random variations are changing with time. The goal of this research is to address these questions by developing new methods to analyze large samples selected from classes of dependent structures arising in many applied fields, such as data from economics or engineering. The aim of this project is to develop new techniques for studying sequences and fields of dependent random variables, which will lead to sharp inequalities and general limit theorems for both stationary and non-stationary additive functionals of Markov chains and other dependent structures. The PI plans to develop a new type of approximation with martingales for Markov chains and fields based on the fruitful idea of conditioning with respect to both past and future of the process. The advantage of this new, surprising method is that no restrictions on the rate of convergence to zero of the dependence coefficients is required for obtaining various limit theorems. The PI also aims to develop operator perturbation theory for non-stationary Markov chains and functions of independent random elements. This approach will lead to new, deep local limit theorems for Markov chains, random fields, and the left random walk on the group of invertible d-dimensional real matrices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
概率论的一个重要研究领域,在统计学中有着丰富的应用,是随机过程的渐近理论,也被称为大样本理论。这是一个评估估计量和统计检验属性的框架,对于预测的高置信度是必要的。大样本理论最初是为独立变量发展起来的,当数据是相关的时,也就是说,当数量具有与它们的值相关的依赖性时,它就困难得多了。当随机变量随时间变化时,问题变得更具挑战性。本研究的目标是通过开发新的方法来解决这些问题,以分析从许多应用领域中产生的依赖结构类中选择的大样本,如经济学或工程学数据。 这个项目的目的是发展新的技术,研究序列和领域的相依随机变量,这将导致尖锐的不等式和一般极限定理的平稳和非平稳添加剂功能的马尔可夫链和其他相关结构。PI计划开发一种新型的近似与鞅的马尔可夫链和领域的基础上,富有成效的想法条件与过去和未来的过程。这个新的,令人惊讶的方法的优点是,没有限制的依赖系数收敛到零的速度是需要获得各种极限定理。PI还旨在发展非平稳马尔可夫链和独立随机元素函数的算子扰动理论。这种方法将导致新的,深刻的局部极限定理马尔可夫链,随机场,和左随机游走组的可逆d维真实的matrix.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Limit theorems for linear random fields with innovations in the domain of attraction of a stable law
线性随机场极限定理在稳定定律吸引力领域的创新
On the Quenched CLT for Stationary Markov Chains
固定马尔可夫链的淬火 CLT
Berry–Esseen type bounds for the left random walk on GLd(R) under polynomial moment conditions
  • DOI:
    10.1214/22-aop1602
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Cuny;J. Dedecker;F. Merlevède;M. Peligrad
  • 通讯作者:
    C. Cuny;J. Dedecker;F. Merlevède;M. Peligrad
On the local limit theorems for psi-mixing Markov chains
关于 psi 混合马尔可夫链的局部极限定理
Functional central limit theorem via nonstationary projective conditions
通过非平稳射影条件的函数中心极限定理
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Florence Merlevede;Magda Peligrad
  • 通讯作者:
    Magda Peligrad
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Magda Peligrad其他文献

ON THE BLOCKWISE BOOTSTRAP FOR EMPIRICAL PROCESSES FOR STATIONARY SEQUENCES
  • DOI:
    10.1214/aop/1022855654
  • 发表时间:
    1998-04
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Magda Peligrad
  • 通讯作者:
    Magda Peligrad
On the local limit theorems for linear sequences of lower psi-mixing Markov chains
低psi混合马尔可夫链线性序列的局部极限定理
A criterion for tightness for a class of dependent random variables
  • DOI:
    10.1007/bf01896693
  • 发表时间:
    1982-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Magda Peligrad
  • 通讯作者:
    Magda Peligrad
On the Weak Invariance Principle for Stationary Sequences under Projective Criteria
  • DOI:
    10.1007/s10959-006-0029-y
  • 发表时间:
    2006-09-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Florence Merlevède;Magda Peligrad
  • 通讯作者:
    Magda Peligrad
Self-normalized central limit theorem for sums of weakly dependent random variables
  • DOI:
    10.1007/bf02214272
  • 发表时间:
    1994-04-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Magda Peligrad;Qi-Man Shao
  • 通讯作者:
    Qi-Man Shao

Magda Peligrad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Magda Peligrad', 18)}}的其他基金

Limit Theorems for Stochastic Processes and Random Fields via Projective Conditions
通过射影条件的随机过程和随机场的极限定理
  • 批准号:
    1811373
  • 财政年份:
    2018
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Continuing Grant
Spectral analysis of stochastic processes and random fields
随机过程和随机场的谱分析
  • 批准号:
    1512936
  • 财政年份:
    2015
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Standard Grant
Asymptotic theory for stochastic processes via martingale methods
通过鞅方法的随机过程渐近理论
  • 批准号:
    1208237
  • 财政年份:
    2012
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotic Behavior of Dependent Sequences of Random Variables and Applications
数学科学:随机变量相关序列的渐近行为及其应用
  • 批准号:
    9304010
  • 财政年份:
    1993
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Behaviour of Sequences of Random Variables and Applications
数学科学:随机变量序列的渐近行为及其应用
  • 批准号:
    9007986
  • 财政年份:
    1991
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Continuing Grant
Asymptotic Behavior of Strong Mixing Sequences of Random Variables and Applications
随机变量强混合序列的渐近行为及其应用
  • 批准号:
    8905614
  • 财政年份:
    1989
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotic Behavior of Mixing Sequenes of Random Variables and Applications
数学科学:随机变量混合序列的渐近行为及其应用
  • 批准号:
    8702759
  • 财政年份:
    1987
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Behavior of Mixing Sequences of Random Variables
数学科学:随机变量混合序列的渐近行为
  • 批准号:
    8503016
  • 财政年份:
    1985
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Standard Grant

相似海外基金

Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密​​顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
  • 批准号:
    24K17055
  • 财政年份:
    2024
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Moral Experience of Families in the Context of Trisomy 13 and 18: Presenting the Results of a Scoping Review
13 号和 18 号三体症背景下家庭的道德体验:介绍范围界定审查的结果
  • 批准号:
    495166
  • 财政年份:
    2023
  • 资助金额:
    $ 30.22万
  • 项目类别:
Identifying strategies to reveal genetic results over the lifespan
确定揭示一生中遗传结果的策略
  • 批准号:
    10739918
  • 财政年份:
    2023
  • 资助金额:
    $ 30.22万
  • 项目类别:
FRAMINGHAM HEART STUDY - TASK AREA C - GENETIC RESULTS REPORTING
弗雷明汉心脏研究 - 任务领域 C - 基因结果报告
  • 批准号:
    10974185
  • 财政年份:
    2023
  • 资助金额:
    $ 30.22万
  • 项目类别:
Early intervention as a determinant of hearing aid benefit for age-related hearing loss: Results from longitudinal cohort studies
早期干预是助听器对年龄相关性听力损失有益的决定因素:纵向队列研究的结果
  • 批准号:
    10749385
  • 财政年份:
    2023
  • 资助金额:
    $ 30.22万
  • 项目类别:
Collaborative Research: Curating, digitizing and disseminating results from an unparalleled collection of fossil vertebrates from the Late Cretaceous of Madagascar
合作研究:整理、数字化和传播来自马达加斯加白垩纪晚期的无与伦比的脊椎动物化石收藏的结果
  • 批准号:
    2242717
  • 财政年份:
    2023
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Standard Grant
Explaining automated test agents and their test results
解释自动化测试代理及其测试结果
  • 批准号:
    23K11062
  • 财政年份:
    2023
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Association of D-dimers with Left Ventricular Hypertrophy and Clinical Outcomes in Mild to Moderate Aortic Stenosis: Results from the PROGRESSA Study
D-二聚体与左心室肥厚和轻中度主动脉瓣狭窄临床结果的关联:PROGRESSA 研究结果
  • 批准号:
    495409
  • 财政年份:
    2023
  • 资助金额:
    $ 30.22万
  • 项目类别:
revAIsor: Revise AI Solutions for Optimal Results
revAIsor:修改人工智能解决方案以获得最佳结果
  • 批准号:
    10075158
  • 财政年份:
    2023
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Grant for R&D
Harvesting Actionable Results for Learning and Instruction: A Novel Mixed Methods Approach to Extracting and Validating Information from Diagnostic Assessment
收获可操作的学习和教学结果:一种从诊断评估中提取和验证信息的新型混合方法
  • 批准号:
    2300382
  • 财政年份:
    2023
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了