Mean Field Games, Mean Field Type Control and Extensions
平均场游戏、平均场类型控制和扩展
基本信息
- 批准号:1303775
- 负责人:
- 金额:$ 33.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-10-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The term "Mean Field Games" was coined by P.L. Lions (Fields Medalist) and J.M. Lasry, a few years ago. It is a remarkable idea to transfer a well known approach of Physics to Social Sciences. The concept of Mean Field in physics attempts to describe the effect of the media on the motion of a particle, this media being composed of an infinite number of particles, similar to the individual one. Conversely in economics, models consider that agents interact through markets (real and financial) and equilibrium can be obtained through prices. It has been widely acknowledged that these types of models cannot realistically address all the phenomena that one can observe in real life, for instance the issue of systemic risk. Mean Field Games is a novel approach to understand what is missing in the models. It has been a spectacular success. Besides economics and finance, it has been very fruitful in many areas such as: traffic control, network analysis, as well as in understanding how technology can expand, and how environmental aspects impact growth. It turns out that the theory can handle also many new considerations of risk management. Independently of the applications, these concepts have completely changed control theory, differential games and introduced new types of partial differential systems. However, Mean Field Games is limited to agents who are identical, like particles. This is a serious limitation, since in social sciences, unlike in physics, the reality is more a situation of coalitions or dominant players. This is the major objective of this proposal: To study extensions to consider coalitions. One has to solve much more complex systems of partial differential equations. A second objective is to develop an Hamilton Jacobi Bellman equation approach to Mean Field Control Type problems, which has never been done before, because of a basic difficulty, called "Time inconsistency" inherent to Mean Field Control (different from Mean Field Games). A third objective is to develop ideas relevant to risk analysis, in which one cannot be satisfied in optimizing an average. Since risk aspects have become predominant in engineering as well as in economics, this direction can have very broad implications, in many areas of strategic importance.
几年前,P.L.Lions(菲尔兹奖牌获得者)和J.M.Lasry(J.M.Lasry)首创了Mean field Games(Mean Field Games)一词。将一种著名的物理学方法转化为社会科学是一个了不起的想法。物理学中平均场的概念试图描述介质对粒子运动的影响,这种介质由无数个粒子组成,类似于单个粒子。相反,在经济学中,模型认为代理人通过市场(真实的和金融的)相互作用,均衡可以通过价格获得。人们普遍认为,这些类型的模型不能现实地解决人们在现实生活中可以观察到的所有现象,例如系统性风险问题。平均场游戏是一种新的方法来理解模型中缺失的东西。这是一次惊人的成功。除了经济和金融,它在许多领域都取得了非常丰硕的成果,例如:交通控制、网络分析,以及在理解技术如何扩展以及环境因素如何影响增长方面。事实证明,该理论还可以处理风险管理的许多新考虑。与应用无关,这些概念完全改变了控制理论和微分对策,并引入了新类型的偏微分系统。然而,平均场游戏仅限于相同的代理,如粒子。这是一个严重的限制,因为在社会科学中,与物理学不同,现实更多的是联盟或主导参与者的情况。这是这项提案的主要目标:研究扩展以考虑联盟。人们不得不解更复杂的偏微分方程组。第二个目标是开发一种汉密尔顿·雅各比·贝尔曼方程方法来解决平均场控制类型的问题,这是以前从未做过的,因为平均场控制(不同于平均场游戏)固有的一个基本困难,称为“时间不一致”。第三个目标是开发与风险分析相关的想法,在这种想法中,人们不能满足于优化平均值。由于风险因素已成为工程学和经济学中的主导因素,这一方向在许多具有战略重要性的领域可能具有非常广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alain Bensoussan其他文献
The optimal control with a general mean reverting inventory control
一般均值回归库存控制的最优控制
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
JINGZHEN LIU;Ka Fai Cedric Yiu;Alain Bensoussan - 通讯作者:
Alain Bensoussan
Extended Mean Field Type Control Theory: A Master Equation Approach with Some Applications
- DOI:
10.1007/s10957-025-02776-4 - 发表时间:
2025-07-14 - 期刊:
- 影响因子:1.500
- 作者:
Alain Bensoussan;Joohyun Kim;Sheung Chi Phillip Yam - 通讯作者:
Sheung Chi Phillip Yam
THE OPTIMAL MEAN VARIANCE PROBLEMWITH INFLATION
通货膨胀的最优均值方差问题
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jingzhen Liu;Ka Fai Cedric Yiu;Alain Bensoussan - 通讯作者:
Alain Bensoussan
Ergodic control for a mean reverting inventory model
均值回归库存模型的遍历控制
- DOI:
10.3934/jimo.2017079 - 发表时间:
2017-09 - 期刊:
- 影响因子:1.3
- 作者:
Jingzhen Liu;Ka Fai Cedric Yiu;Alain Bensoussan - 通讯作者:
Alain Bensoussan
h3 class=gs_rt style=font-family:Tahoma;font-weight:normal;color:#222222;font-size:16px;background-color:#FFFFFF;a href=http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2412983 target=_blank
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alain Bensoussan;Shaokuan Chen;Suresh Sethi - 通讯作者:
Suresh Sethi
Alain Bensoussan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alain Bensoussan', 18)}}的其他基金
Machine Learning and Mean Field Control
机器学习和平均场控制
- 批准号:
2204795 - 财政年份:2022
- 资助金额:
$ 33.96万 - 项目类别:
Standard Grant
New Extensions of the Master Equation in Mean Field Control Theory and Applications
平均场控制理论与应用主方程的新推广
- 批准号:
1905449 - 财政年份:2019
- 资助金额:
$ 33.96万 - 项目类别:
Standard Grant
New Problems in Mean Field Control Theory
平均场控制理论的新问题
- 批准号:
1612880 - 财政年份:2016
- 资助金额:
$ 33.96万 - 项目类别:
Standard Grant
New Stochastic Processes, Partial Differential Equations, and Control Problems Arising in Models of Mechanical Structures Subjected to Vibrations
振动机械结构模型中出现的新随机过程、偏微分方程和控制问题
- 批准号:
0705247 - 财政年份:2007
- 资助金额:
$ 33.96万 - 项目类别:
Standard Grant
Inventory Control with Partial Observations and Inspections
通过部分观察和检查进行库存控制
- 批准号:
0509278 - 财政年份:2005
- 资助金额:
$ 33.96万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mean Field Games and Master equations
平均场游戏和主方程
- 批准号:
EP/X020320/1 - 财政年份:2023
- 资助金额:
$ 33.96万 - 项目类别:
Research Grant
Risk-Sensitivity in Mean Field Games and Energy Markets
平均场博弈和能源市场的风险敏感性
- 批准号:
RGPIN-2022-05337 - 财政年份:2022
- 资助金额:
$ 33.96万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic analysis on PDEs appearing in mean field games, crystal growth and anomalous diffusion
平均场博弈、晶体生长和反常扩散中偏微分方程的渐近分析
- 批准号:
22K03382 - 财政年份:2022
- 资助金额:
$ 33.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interacting Particle Systems and Mean-field games Workshops
交互粒子系统和平均场游戏研讨会
- 批准号:
2207572 - 财政年份:2022
- 资助金额:
$ 33.96万 - 项目类别:
Standard Grant
Systems, Control and Mean Field Games on Networks
网络上的系统、控制和平均场博弈
- 批准号:
RGPIN-2019-05336 - 财政年份:2022
- 资助金额:
$ 33.96万 - 项目类别:
Discovery Grants Program - Individual
Mean Field Games, Information Design and Evolutionary Finance
平均场博弈、信息设计和进化金融
- 批准号:
RGPIN-2020-06290 - 财政年份:2022
- 资助金额:
$ 33.96万 - 项目类别:
Discovery Grants Program - Individual
Risk-Sensitivity in Mean Field Games and Energy Markets
平均场博弈和能源市场的风险敏感性
- 批准号:
DGECR-2022-00468 - 财政年份:2022
- 资助金额:
$ 33.96万 - 项目类别:
Discovery Launch Supplement
Mean Field Games, Information Design and Evolutionary Finance
平均场博弈、信息设计和进化金融
- 批准号:
RGPIN-2020-06290 - 财政年份:2021
- 资助金额:
$ 33.96万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Mean Field Games with Economics Applications: New Techniques in Partial Differential Equations
职业:平均场博弈与经济学应用:偏微分方程新技术
- 批准号:
2045027 - 财政年份:2021
- 资助金额:
$ 33.96万 - 项目类别:
Continuing Grant
CAREER: Stochastic Games on Large Graphs in the Mean Field Regime and Beyond
职业:平均场制度及其他大图上的随机博弈
- 批准号:
2045328 - 财政年份:2021
- 资助金额:
$ 33.96万 - 项目类别:
Continuing Grant