III-CXT: Collaborative Research: Computational Methods for Understanding Social Interactions in Animal Populations
III-CXT:合作研究:理解动物群体社会互动的计算方法
基本信息
- 批准号:0705822
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of the proposed research is to create analytical and computational tools that explicitly address the time and order of social interactions between individuals. The proposed approach combines ideas from social network analysis, Internet computing, distributed computing, and machine learning to solve problems in population biology. The diverse computational tasks of this project include design of algorithmic techniques to identify social entities such as a communities, leaders, and followers, and to use these structures to predict social response patterns to danger or disturbances. Nowhere is the impact of social structure likely to be greater than when species come in contact with predators. Thus, the accuracy and predictive power of the proposed computational tools will be tested by characterizing the social structure of horses and zebras (equids) both before and after human- or predator-induced perturbations to the social network. The proposed interdisciplinary research will have broader impacts on a wide range of research communities. New methods for analysis of social interactions in animal populations will be useful for behavioral biologists in such diverse fields as behavioral ecology, animal husbandry, conservation biology, and disease ecology. The machine learning algorithms that will be develop are relevant to many studies in which researchers need to classify temporal interaction data. The proposed network methods have broader relevance to human societies: disease transmission, dissemination of ideas, and social response to crises are all dynamic processes occurring via social networks. Further, through teaching and participation in outreach, students and school teachers will gain access to opportunities for hands-on, interdisciplinary experiences in a new area of computational biology. The research and software resulting from the proposed project will be disseminated both in computational and biological communities and enhanced by cross-disciplinary training activities and will serve to train a new generation of interdisciplinary scientists.
拟议研究的目标是创建分析和计算工具,明确解决个人之间的社会互动的时间和顺序。所提出的方法结合了社会网络分析,互联网计算,分布式计算和机器学习的思想,以解决人口生物学问题。该项目的各种计算任务包括设计算法技术来识别社区,领导者和追随者等社会实体,并使用这些结构来预测对危险或干扰的社会反应模式。当物种与捕食者接触时,社会结构的影响可能比任何地方都大。因此,所提出的计算工具的准确性和预测能力将通过表征人类或捕食者引起的社会网络扰动之前和之后的马和斑马(Equids)的社会结构来测试。拟议的跨学科研究将对广泛的研究界产生更广泛的影响。分析动物群体中社会相互作用的新方法将对行为生态学、畜牧业、保护生物学和疾病生态学等不同领域的行为生物学家有用。将要开发的机器学习算法与研究人员需要对时间交互数据进行分类的许多研究相关。所提出的网络方法对人类社会具有更广泛的相关性:疾病传播、思想传播和社会对危机的反应都是通过社交网络发生的动态过程。此外,通过教学和参与外展,学生和学校教师将获得机会,在计算生物学的一个新领域的动手,跨学科的经验。拟议项目产生的研究成果和软件将在计算界和生物界传播,并通过跨学科培训活动得到加强,将有助于培训新一代跨学科科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanya Berger-Wolf其他文献
Correction: BaboonLand Dataset: Tracking Primates in the Wild and Automating Behaviour Recognition from Drone Videos
- DOI:
10.1007/s11263-025-02532-1 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:9.300
- 作者:
Isla Duporge;Maksim Kholiavchenko;Roi Harel;Scott Wolf;Daniel I Rubenstein;Margaret C Crofoot;Tanya Berger-Wolf;Stephen J Lee;Julie Barreau;Jenna Kline;Michelle Ramirez;Charles V Stewart - 通讯作者:
Charles V Stewart
Guest editors’ foreword: special section on local pattern mining in graph-structured data
- DOI:
10.1007/s10472-014-9401-2 - 发表时间:
2014-01-28 - 期刊:
- 影响因子:1.000
- 作者:
Tanya Berger-Wolf;Tamás Horváth - 通讯作者:
Tamás Horváth
A high performance multiple sequence alignment system for pyrosequencing reads from multiple reference genomes
- DOI:
10.1016/j.jpdc.2011.08.001 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:
- 作者:
Fahad Saeed;Alan Perez-Rathke;Jaroslaw Gwarnicki;Tanya Berger-Wolf;Ashfaq Khokhar - 通讯作者:
Ashfaq Khokhar
Tanya Berger-Wolf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tanya Berger-Wolf', 18)}}的其他基金
Global Centers Track 1: AI and Biodiversity Change (ABC)
全球中心轨道 1:人工智能和生物多样性变化 (ABC)
- 批准号:
2330423 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
HDR Institute: Imageomics: A New Frontier of Biological Information Powered by Knowledge-Guided Machine Learning
HDR 研究所:图像组学:知识引导机器学习驱动的生物信息新领域
- 批准号:
2118240 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Cooperative Agreement
EAGER-NEON: Image-Based Ecological Information System (IBEIS) for Animal Sighting Data for NEON
EAGER-NEON:用于 NEON 动物观察数据的基于图像的生态信息系统 (IBEIS)
- 批准号:
1550853 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
III: Student Travel Fellowships for KDD 2014
III:2014 年 KDD 学生旅行奖学金
- 批准号:
1439420 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: EAGER: Prototype of an Image-Based Ecological Information System (IBEIS)
合作研究:EAGER:基于图像的生态信息系统(IBEIS)原型
- 批准号:
1453555 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Scalable Kinship Inference in Wild Populations Across Years and Generations
III:媒介:合作研究:跨年、跨代野生种群的可扩展亲缘关系推断
- 批准号:
1064681 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
EAGER: Field Computational Ecology Course
EAGER:现场计算生态学课程
- 批准号:
1152895 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Computational Tools for Population Biology
职业:群体生物学的计算工具
- 批准号:
0747369 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SEI: Computational Methods for Kinship Reconstruction
合作研究:SEI:亲属关系重建的计算方法
- 批准号:
0612044 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
吩嗪类化合物CXT-A3对乳腺癌干细胞的抑制作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
- 批准号:
1103684 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
III-CXT-Medium: Collaborative Research: Inference of Complex Genealogical Histories in Populations: Algorithms and Applications
III-CXT-Medium:协作研究:群体中复杂谱系历史的推断:算法和应用
- 批准号:
0803440 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: REGNET - Information Management and Compliance Assistance for Patent Laws and Regulations
III-CXT-Small:合作研究:REGNET - 专利法律法规的信息管理和合规协助
- 批准号:
0811460 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
- 批准号:
0812271 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
- 批准号:
0812372 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询
- 批准号:
0812073 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
III-CXT-Large: Collaborative Research: Interactive and Intelligent searching of biological images by query and network navigation with learning capabilities.
III-CXT-Large:协作研究:通过具有学习功能的查询和网络导航对生物图像进行交互式和智能搜索。
- 批准号:
0808661 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询
- 批准号:
0854606 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying
III-CXT-Small:协作研究:结构化、推理和查询
- 批准号:
0812124 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
`III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
`III-CXT-Small:协作研究:在非常大的医学图像数据库中构建、推理和查询
- 批准号:
0812120 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant