CAREER: Computational Tools for Population Biology
职业:群体生物学的计算工具
基本信息
- 批准号:0747369
- 负责人:
- 金额:$ 50.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computation has fundamentally changed the way we study nature. Recent breakthroughs in data collection technology, such as GPS and other mobile sensors, gene sequencing, and microsatellite genotyping, are giving biologists access to data about wild populations, from genetic to social interactions, that are orders of magnitude richer than any previously collected. Such data offer the promise of answering some of the big questions in population biology: How do animals form social groups and how do genetic ties affect these processes? Which individuals are leaders and to what degree do they control the behavior of others? How do social interactions affect the survival of a species? Unfortunately,in this domain,our ability to analyze data lags substantially behind our ability to collect it. There are three major drawbacks with currently available techniques for analysis of both genotypic and social structure data. First, most traditional methods are aggregate and numeric, thus they are inappropriate for identifying infrequent yet critical events, such as response to predation. Second, the newer approaches focus on human populations and are not directly applicable in the context of wildlife biology. Finally, current analysis techniques are essentially static in that all information about the time and order of social interactions or the concurrency of gene expressions is discarded. Thus, they lack the expressive and computational power to answer the questions outlined above. Intellectual MeritThe goal of this interdisciplinary research is to develop a robust and scalable computational framework for the emerging field of computational population biology. Ultimately, this research will enable biologists in their scientific inquiry to take advantage of new data by focusing on its underlying qualitative (rather than numerical) and explicitly dynamic structure. This research will use combinatorial techniques to extract that structure. In the scope of this project the following will be developed:1. Techniques for inferring genetic relationships in wildlife populations and using them to predict genetic diversity.2. Novel computational methodologies and tools for analyzing dynamic social interactions, focusing on prediction of interaction patterns and dynamic processes within populations.3. Techniques for combining the genetic and the social structures of a population and across species to identify global ecological processes. Broader ImpactsMany students, especially female, turn away from computer science in part because of the perceived lack of its applicability to real-world issues and impact on the society. This project has the potential to attract those who would otherwise be lost to computing by providing the view of its larger impact and connection to science. A comprehensive interdisciplinary education and outreach plan will be developed which bridges the traditional pipeline from K-12 to graduate education. The standard views of mathematics and computing will be broadened to include "puzzle-solving" combinatorial thinking by introducing hands-on outreach activities. The unique conflation of wild life biology and computing will continue to be presented at various forums aimed at attracting minorities and girls to science and computer science. Finally, through introduction of biological motivation in computer science courses and the computational methodology in biology courses, this research will provide the students in both disciplines with experiences in asking and answering biological questions by developing new applications of computer science. The methodologies, concepts, and tools developed as part of this interdisciplinary research will be useful to scientists in diverse fields such as behavioral ecology, conservation biology, and disease ecology. Techniques for analysis of social structures have broader relevance to human societies, especially in the context of epidemiology, dissemination of ideas, and crisis management.
计算从根本上改变了我们研究自然的方式。最近在数据收集技术方面的突破,如GPS和其他移动传感器、基因测序和微卫星基因分型,使生物学家能够获得关于野生种群的数据,从遗传到社会互动,这些数据比以前收集的任何数据都丰富了几个数量级。这些数据有望回答种群生物学中的一些大问题:动物是如何形成社会群体的,基因联系是如何影响这些过程的?哪些人是领导者?他们在多大程度上控制他人的行为?社会互动如何影响一个物种的生存?不幸的是,在这个领域,我们分析数据的能力远远落后于我们收集数据的能力。目前可用于分析基因和社会结构数据的技术有三个主要缺陷。首先,大多数传统方法是聚集的和数字的,因此它们不适合识别不常见但关键的事件,例如对捕食的反应。其次,新的方法侧重于人类种群,并不直接适用于野生动物生物学的背景。最后,目前的分析技术基本上是静态的,因为所有关于社会互动或基因表达同时发生的时间和顺序的信息都被丢弃了。因此,它们缺乏回答上述问题的表达能力和计算能力。智力价值这项跨学科研究的目标是为计算种群生物学这一新兴领域开发一个健壮且可扩展的计算框架。最终,这项研究将使生物学家在他们的科学研究中,通过关注潜在的定性(而不是数字)和显式的动态结构来利用新数据。这项研究将使用组合技术来提取这种结构。在这个项目的范围内,将开发以下内容:1.推断野生动物种群中的遗传关系并利用它们预测遗传多样性的技术。用于分析动态社会互动的新的计算方法和工具,侧重于预测人口中的互动模式和动态过程。结合种群和跨物种的遗传和社会结构以确定全球生态过程的技术。更广泛的影响许多学生,尤其是女性,对计算机科学敬而远之,部分原因是认为它不适用于现实世界的问题和对社会的影响。这个项目有可能吸引那些本来会迷失在计算中的人,因为它提供了它与科学的更大影响和联系的观点。将制定一项全面的跨学科教育和外联计划,为从K-12到研究生教育的传统渠道架起一座桥梁。数学和计算的标准观点将扩大到包括“解谜”组合思维,通过引入亲身实践推广活动。野生生物生物学和计算机的独特结合将继续在各种论坛上展示,旨在吸引少数群体和女孩学习科学和计算机科学。最后,通过在计算机科学课程中引入生物动机和在生物课程中引入计算方法论,本研究将为这两个学科的学生提供通过开发计算机科学的新应用来提出和回答生物问题的经验。作为这种跨学科研究的一部分而开发的方法、概念和工具将对行为生态学、保护生物学和疾病生态学等不同领域的科学家有用。社会结构分析技术与人类社会有更广泛的相关性,特别是在流行病学、思想传播和危机管理的背景下。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanya Berger-Wolf其他文献
Correction: BaboonLand Dataset: Tracking Primates in the Wild and Automating Behaviour Recognition from Drone Videos
- DOI:
10.1007/s11263-025-02532-1 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:9.300
- 作者:
Isla Duporge;Maksim Kholiavchenko;Roi Harel;Scott Wolf;Daniel I Rubenstein;Margaret C Crofoot;Tanya Berger-Wolf;Stephen J Lee;Julie Barreau;Jenna Kline;Michelle Ramirez;Charles V Stewart - 通讯作者:
Charles V Stewart
Guest editors’ foreword: special section on local pattern mining in graph-structured data
- DOI:
10.1007/s10472-014-9401-2 - 发表时间:
2014-01-28 - 期刊:
- 影响因子:1.000
- 作者:
Tanya Berger-Wolf;Tamás Horváth - 通讯作者:
Tamás Horváth
A high performance multiple sequence alignment system for pyrosequencing reads from multiple reference genomes
- DOI:
10.1016/j.jpdc.2011.08.001 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:
- 作者:
Fahad Saeed;Alan Perez-Rathke;Jaroslaw Gwarnicki;Tanya Berger-Wolf;Ashfaq Khokhar - 通讯作者:
Ashfaq Khokhar
Tanya Berger-Wolf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tanya Berger-Wolf', 18)}}的其他基金
Global Centers Track 1: AI and Biodiversity Change (ABC)
全球中心轨道 1:人工智能和生物多样性变化 (ABC)
- 批准号:
2330423 - 财政年份:2023
- 资助金额:
$ 50.49万 - 项目类别:
Standard Grant
HDR Institute: Imageomics: A New Frontier of Biological Information Powered by Knowledge-Guided Machine Learning
HDR 研究所:图像组学:知识引导机器学习驱动的生物信息新领域
- 批准号:
2118240 - 财政年份:2021
- 资助金额:
$ 50.49万 - 项目类别:
Cooperative Agreement
EAGER-NEON: Image-Based Ecological Information System (IBEIS) for Animal Sighting Data for NEON
EAGER-NEON:用于 NEON 动物观察数据的基于图像的生态信息系统 (IBEIS)
- 批准号:
1550853 - 财政年份:2015
- 资助金额:
$ 50.49万 - 项目类别:
Standard Grant
III: Student Travel Fellowships for KDD 2014
III:2014 年 KDD 学生旅行奖学金
- 批准号:
1439420 - 财政年份:2014
- 资助金额:
$ 50.49万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Prototype of an Image-Based Ecological Information System (IBEIS)
合作研究:EAGER:基于图像的生态信息系统(IBEIS)原型
- 批准号:
1453555 - 财政年份:2014
- 资助金额:
$ 50.49万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Scalable Kinship Inference in Wild Populations Across Years and Generations
III:媒介:合作研究:跨年、跨代野生种群的可扩展亲缘关系推断
- 批准号:
1064681 - 财政年份:2011
- 资助金额:
$ 50.49万 - 项目类别:
Continuing Grant
EAGER: Field Computational Ecology Course
EAGER:现场计算生态学课程
- 批准号:
1152895 - 财政年份:2011
- 资助金额:
$ 50.49万 - 项目类别:
Standard Grant
III-CXT: Collaborative Research: Computational Methods for Understanding Social Interactions in Animal Populations
III-CXT:合作研究:理解动物群体社会互动的计算方法
- 批准号:
0705822 - 财政年份:2007
- 资助金额:
$ 50.49万 - 项目类别:
Continuing Grant
Collaborative Research: SEI: Computational Methods for Kinship Reconstruction
合作研究:SEI:亲属关系重建的计算方法
- 批准号:
0612044 - 财政年份:2006
- 资助金额:
$ 50.49万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Computational tools for analyzing and interpreting DNA methylation
职业:用于分析和解释 DNA 甲基化的计算工具
- 批准号:
2144534 - 财政年份:2022
- 资助金额:
$ 50.49万 - 项目类别:
Continuing Grant
CAREER: Statistical approaches and computational tools for analyzing spatially-resolved single-cell transcriptomics data
职业:用于分析空间分辨单细胞转录组数据的统计方法和计算工具
- 批准号:
2047611 - 财政年份:2021
- 资助金额:
$ 50.49万 - 项目类别:
Continuing Grant
CAREER: Developing Computational Tools to Revitalize the U.S. Textile Manufacturing Workforce
职业:开发计算工具以振兴美国纺织制造劳动力
- 批准号:
2048022 - 财政年份:2021
- 资助金额:
$ 50.49万 - 项目类别:
Standard Grant
CAREER: Revealing spin-state-dependent reactivity in open-shell single atom catalysts with systematically-improvable computational tools
职业:利用可系统改进的计算工具揭示开壳单原子催化剂中自旋态依赖的反应性
- 批准号:
1846426 - 财政年份:2019
- 资助金额:
$ 50.49万 - 项目类别:
Standard Grant
CAREER: Mathematical Modeling and Computational Tools for in vivo Astrocyte Activity
职业:体内星形胶质细胞活性的数学建模和计算工具
- 批准号:
1750931 - 财政年份:2018
- 资助金额:
$ 50.49万 - 项目类别:
Continuing Grant
CAREER: Computational tools for the analysis of large stochastic networks
职业:用于分析大型随机网络的计算工具
- 批准号:
1554907 - 财政年份:2016
- 资助金额:
$ 50.49万 - 项目类别:
Continuing Grant
CAREER: Computational and visualization tools for translating climate change into ecological impacts
职业:将气候变化转化为生态影响的计算和可视化工具
- 批准号:
1349865 - 财政年份:2014
- 资助金额:
$ 50.49万 - 项目类别:
Continuing Grant
CAREER: Computational Tools for Fundamental Characterization and Inference of Genetic Interaction Networks
职业:遗传相互作用网络基本表征和推理的计算工具
- 批准号:
0953881 - 财政年份:2010
- 资助金额:
$ 50.49万 - 项目类别:
Continuing Grant
CAREER: Computational Tools for Interpreting Genomes
职业:解释基因组的计算工具
- 批准号:
0846218 - 财政年份:2009
- 资助金额:
$ 50.49万 - 项目类别:
Standard Grant
CAREER: Computational Tools for Evolutionary Analysis of Biological Interaction Networks
职业:生物相互作用网络进化分析的计算工具
- 批准号:
0845336 - 财政年份:2009
- 资助金额:
$ 50.49万 - 项目类别:
Continuing Grant