Importance Sampling and the Subsolutions of an Associated Isaacs Equation

重要性采样和相关 Isaacs 方程的子解

基本信息

  • 批准号:
    0706003
  • 负责人:
  • 金额:
    $ 70.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-15 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

In many scientific areas, an extensively used technique for the fast simulation of rare events is importance sampling [IS]. The basic idea of IS to simulate the system under a different probability distribution, and correct for biasedness via the likelihood ratio. During the last three decades, most of the IS schemes that were developed were based on heuristics, and led to algorithms with questionable performance. In contrast, this research project develops a systematic methodology for the construction of simple, efficient IS schemes for broad classes of process models. This approach capitalizes on the intimate connection between IS and a related differential game. It turns out that subsolutions to the Isaacs equation associated with the game can be used to build IS schemes whose performance can be rigorously characterized. The investigators are particularly interested in developing both theoretical and practical aspects of importance sampling in the areas of stochastic networks, metastability analysis, systems with discontinuous dynamics, small noise diffusions, counting problems, analysis of higher-order moments of IS estimators, and heavy-tailed distributions. The project will also study the use of subsolutions for the construction and analysis of fast simulation methods based on branching processes, such as splitting and RESTART.Rare events, such as transitions between stable wells in a model from chemical physics, data loss in a highly reliable communication system, or unexpectedly large payouts in insurance claims, are often key quantitative measures of a system's overall behavior. They also play a central role in risk assessment and management. Reliable numerical methods are required in order to design systems and protocols that can minimize and mitigate the negative effects of rare events. The main technique for the fast simulation of rare events is importance sampling. Importance sampling algorithms have been developed over the last thirty years for many different application areas. However, the development to date has been largely ad hoc and without a proper theoretical foundation. Practitioners have relied on a few rudimentary heuristics in constructing importance sampling algorithms. The performance of these schemes was supported by limited numerical evidence, and unfortunately recent work has shown that these heuristics are in general unreliable. This project brings new ideas from probability theory and tools from game theory and partial differential equations to the problem of design and analysis of importance sampling schemes. The work aims to develop systematic methods for the construction and rigorous analysis of reliable algorithms.
在许多科学领域中,重要性抽样(IS)是一种广泛使用的快速模拟稀有事件的技术。 IS的基本思想是在不同的概率分布下模拟系统,并通过似然比来纠正偏差。在过去的三十年中,大多数的IS计划,开发的基础上的算法,并导致可疑的性能。 相比之下,本研究项目开发了一个系统的方法,用于构建简单,高效的IS计划,广泛的过程模型类。 这种方法利用了IS和相关微分博弈之间的密切联系。 事实证明,与游戏相关的Isaacs方程的子解可以用来构建IS方案,其性能可以严格表征。 调查人员特别感兴趣的是发展理论和实践方面的重要性抽样在随机网络,亚稳定性分析,系统与不连续动态,小噪声扩散,计数问题,分析高阶矩的IS估计,和重尾分布。 该项目还将研究使用子解构建和分析基于分支过程的快速模拟方法,如分裂和重新开始。罕见事件,如化学物理模型中稳定威尔斯之间的转换,高度可靠的通信系统中的数据丢失,或意外的保险索赔中的巨额支出,通常是系统整体行为的关键定量测量。 它们还在风险评估和管理方面发挥核心作用。 需要可靠的数值方法,以设计系统和协议,可以尽量减少和减轻罕见事件的负面影响。 重要抽样是稀有事件快速模拟的主要技术。 重要性抽样算法在过去的三十年中已经发展到许多不同的应用领域。 然而,迄今为止的发展在很大程度上是临时性的,没有适当的理论基础。 从业者在构建重要性抽样算法时依赖于一些基本的算法。 这些方案的性能得到了有限的数值证据的支持,不幸的是,最近的工作表明,这些算法一般是不可靠的。 这个项目带来了新的想法,从概率论和工具,从博弈论和偏微分方程的问题的设计和分析的重要性抽样方案。 这项工作的目的是开发系统的方法,建设和严格的分析可靠的算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Dupuis其他文献

Explicit Solution for a Network Control Problem in the Large Deviation Regime
  • DOI:
    10.1023/b:ques.0000021147.09071.e3
  • 发表时间:
    2004-01-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Rami Atar;Adam Shwartz;Paul Dupuis
  • 通讯作者:
    Paul Dupuis
Risk-Sensitive and Robust Escape Control for Degenerate Diffusion Processes
Large deviations for Markov processes with discontinuous statistics, II: random walks
Large deviations and importance sampling for a tandem network with slow-down
  • DOI:
    10.1007/s11134-007-9048-3
  • 发表时间:
    2007-11-06
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Paul Dupuis;Kevin Leder;Hui Wang
  • 通讯作者:
    Hui Wang
Ab initio studies of the interactions in Van der Waals molecules
范德华分子相互作用的从头算研究
  • DOI:
  • 发表时间:
    1980
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Avoird;P. Wormer;F. Mulder;R. Berns;Pavel Hobza;Rudolf Zahradnik;Ginette Trudeau;Paul Dupuis;Camille Sandorfy;Jean;Maurice Guérin
  • 通讯作者:
    Maurice Guérin

Paul Dupuis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Dupuis', 18)}}的其他基金

Methods for Analysis and Optimization of Stochastic Systems with Model Uncertainty and Related Monte Carlo Schemes
具有模型不确定性的随机系统的分析和优化方法及相关蒙特卡罗方案
  • 批准号:
    1904992
  • 财政年份:
    2019
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Continuing Grant
Large Deviation Methods for the Analysis and Design of Accelerated Monte Carlo Schemes
加速蒙特卡罗方案分析与设计的大偏差方法
  • 批准号:
    1317199
  • 财政年份:
    2013
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Standard Grant
Fast simulation, large deviations, and associated Hamilton-Jacobi-Bellman equations
快速仿真、大偏差和相关的 Hamilton-Jacobi-Bellman 方程
  • 批准号:
    1008331
  • 财政年份:
    2010
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Standard Grant
Research on Stochastic Processes and Optimization
随机过程与优化研究
  • 批准号:
    0404806
  • 财政年份:
    2004
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Education and Research on Stochastic Process Models in Telecommunication
GOALI:电信随机过程模型的协作教育和研究
  • 批准号:
    0306070
  • 财政年份:
    2003
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Standard Grant
Research on Stochastic Processes and Optimization
随机过程与优化研究
  • 批准号:
    0072004
  • 财政年份:
    2000
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Continuing Grant
Research on Stochastic Processes and Optimization
随机过程与优化研究
  • 批准号:
    9704426
  • 财政年份:
    1997
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research on Stochastic Processes and Optimization
数学科学:随机过程和优化研究
  • 批准号:
    9403820
  • 财政年份:
    1994
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Stochastic Process Theory
数学科学:随机过程理论研究
  • 批准号:
    9115762
  • 财政年份:
    1991
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research on Stochastic Process and Large Deviation Theory
数学科学:随机过程与大偏差理论研究
  • 批准号:
    8902333
  • 财政年份:
    1989
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Standard Grant

相似海外基金

Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Studentship
EMPOWHPVR: Exploring the factors that impact HPV self-sampling uptake amongst Black women and people with a cervix in Peel region, Ontario
EMPOWHPVR:探讨影响安大略省皮尔地区黑人女性和宫颈癌患者 HPV 自我采样率的因素
  • 批准号:
    502585
  • 财政年份:
    2024
  • 资助金额:
    $ 70.97万
  • 项目类别:
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
  • 批准号:
    MR/X030776/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Research Grant
ERI: From Data to Design: Enhancing Pedestrian Infrastructure for Well-Being through Mobile Sensing and Experience Sampling in the Wild
ERI:从数据到设计:通过移动传感和野外体验采样增强行人基础设施以促进福祉
  • 批准号:
    2347012
  • 财政年份:
    2024
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Standard Grant
REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
  • 批准号:
    EP/Y029631/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Fellowship
Oregon State University Marine Rock and Sediment Sampling (MARSSAM) Facility Oceanographic Instrumentation 2024
俄勒冈州立大学海洋岩石和沉积物采样 (MARSSAM) 设施海洋学仪器 2024
  • 批准号:
    2415967
  • 财政年份:
    2024
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Standard Grant
Advancing the boundaries of grain sampling: A robot for the autonomous, safe and representative sampling of grain bulks
突破谷物采样的界限:用于对散装谷物进行自主、安全和代表性采样的机器人
  • 批准号:
    10089327
  • 财政年份:
    2024
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Collaborative R&D
Development of PU signal sampling technique of fluxgate magnetometer and progressive comprehension of three-dimensional magnetic field in space
磁通门磁力计PU信号采样技术的发展与空间三维磁场的渐进理解
  • 批准号:
    23H01230
  • 财政年份:
    2023
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Surveillance and sampling to maintain absence of pests and diseases
监测和采样以确保没有病虫害
  • 批准号:
    LP220100003
  • 财政年份:
    2023
  • 资助金额:
    $ 70.97万
  • 项目类别:
    Linkage Projects
Fiber sampling technique and counting protocol development for carbon nanotubes
碳纳米管纤维采样技术和计数协议开发
  • 批准号:
    10593857
  • 财政年份:
    2023
  • 资助金额:
    $ 70.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了