Research on Stochastic Processes and Optimization

随机过程与优化研究

基本信息

  • 批准号:
    9704426
  • 负责人:
  • 金额:
    $ 12.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-01 至 2000-08-31
  • 项目状态:
    已结题

项目摘要

9704426 Dupuis This project covers three topics: (i) theory and applications of the Skorokhod Problem; (ii) large deviations and risk sensitive control and robust control of queueing networks; and (iii) computational methods for deterministic optimal control problems and related first order nonlinear PDE. The solution to the Skorokhod Problem defines what might be considered the input/output map for a number of exact and approximate models in queueing, communication, economics, and other areas. Except in special cases, little is known about the analytical properties of this mapping. This research will build on prior work of the investigator and H. Ishii which takes a geometric approach to obtaining regularity conditions for the Skorokhod Problem. The main thrust of the present work is the development and application of methods based on convex duality. The second part of the project studies large deviations for queueing networks. The main topic here is the formulation and analysis of risk sensitive criteria for the control and regulation of queueing networks. In almost all models for networks there are errors, approximations, and model uncertainty, and one would like to design control schemes that are insensitive to such errors. Using the duality between exponential integrals and the relative entropy function, one can (at least in the context of diffusions) give a precise quantitative characterization of the additional robustness properties that are obtained when a risk sensitive criteria is used. The investigator will formulate and analyze via large deviation techniques such criteria in a queueing context. The final part of the project considers cmmputational methods for deterministic optimal control problems. The main emphasis here is on the development of practical algorithms with good qualitative properties. This will be done for a class of problems with very similar features that arise in large deviation for diffusions, certain problems fr om computer vision, and robust nonlinear control and robust filtering. Modern communication, computer, and queueing systems are very complicated, and in fact too complicated to analyze in complete detail. As systems become more and more heterogeneous (e.g., different data classes, different quality of service requirements, etc.) the control and regulation of these systems becomes more difficult and less intuitive. The first two parts of this project investigate two approaches to dealing with such systems. When analyzing queueing and communication systems one needs (relatively) simple system models which capture the most important aspects of the true system. Linear systems are unable to capture the system behavior caused by hard constraints (non-negativity of queue lengths, limits on buffer sizes, etc.) and discontinuities that occur naturally in well designed routing and service protocols. Part of this research is to look at alternatives to linear systems. The second part focuses on the study of risk sensitive criteria for such systems. Risk sensitive and robust criteria provide alternatives to traditional criteria for the evaluation of system performance, and it is now understood that they are very useful in situations where model uncertainty and robustness against modeling errors are important. Such robustness properties are always important for communication and manufacturing systems. The aim here is to properly formulate and analyze risk-sensitive criteria for random networks, and to quantify the robustness properties when compared to traditional criteria. The last part of the project is devoted to the development of usable and efficient computational methods for deterministic optimal control problems, and in particular to the class of problems that arise in the second part of the proposal.
9704426 DUPUI这个项目涵盖了三个主题:(i)Skorokhod问题的理论和应用; (ii)大偏差和风险敏感控制和对排队网络​​的强大控制; (iii)确定性最佳控制问题和相关一阶非线性PDE的计算方法。 Skorokhod问题的解决方案定义了可以被认为是排队,交流,经济学和其他领域的许多精确模型的输入/输出图。除在特殊情况下,对此映射的分析特性知之甚少。这项研究将基于研究人员和H. ishii的先前工作,该工作采用几何方法来获得Skorokhod问题的规律性条件。本工作的主要目的是基于凸双重性的方法的开发和应用。 项目的第二部分研究排队网络的大偏差。这里的主要主题是对排队网络​​控制和调节的风险敏感标准的制定和分析。在几乎所有网络模型中,都有错误,近似值和模型不确定性,并且希望设计对此类错误不敏感的控制方案。使用指数积分和相对熵函数之间的二元性,一个人可以(至少在扩散的背景下)对使用风险敏感标准时获得的附加鲁棒性特性进行精确的定量表征。 研究人员将在排队的情况下通过大偏差技术制定和分析。该项目的最后一部分考虑了确定性最佳控制问题的CMMPutational方法。这里的主要重点是具有良好定性特性的实用算法的发展。这将用于一类具有非常相似特征的问题,这些特征在扩散较大的偏差,计算机视觉以及强大的非线性控制和稳健的过滤中出现。 现代通信,计算机和排队系统非常复杂,实际上太复杂了,无法详细分析。随着系统变得越来越异质(例如,不同的数据类别,不同的服务要求等不同),对这些系统的控制和调节变得更加困难,更直观。该项目的前两个部分研究了处理此类系统的两种方法。 在分析排队和通信系统时,需要(相对)简单的系统模型,这些系统模型捕获了真实系统的最重要方面。线性系统无法捕获由硬约束(队列长度的非负性,缓冲区尺寸的限制等)引起的系统行为,并且在设计良好的路由和服务协议中自然发生的不连续性。这项研究的一部分是研究线性系统的替代方案。第二部分重点是研究此类系统的风险敏感标准。 风险敏感和健壮的标准为评估系统性能的传统标准提供了替代方案,现在可以理解,在模型不确定性和鲁棒性抗建模错误的情况下它们非常有用。 这种鲁棒性特性对于通信和制造系统始终很重要。这里的目的是正确制定和分析随机网络的风险敏感标准,并与传统标准相比量化鲁棒性特性。 该项目的最后一部分致力于开发确定性最佳控制问题的可用和有效的计算方法,尤其是提案第二部分中出现的问题类别。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Dupuis其他文献

Ab initio studies of the interactions in Van der Waals molecules
范德华分子相互作用的从头算研究
  • DOI:
  • 发表时间:
    1980
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Avoird;P. Wormer;F. Mulder;R. Berns;Pavel Hobza;Rudolf Zahradnik;Ginette Trudeau;Paul Dupuis;Camille Sandorfy;Jean;Maurice Guérin
  • 通讯作者:
    Maurice Guérin
Computer-Aided Qualitative Data Analysis: Theory, Methods and Practice
计算机辅助定性数据分析:理论、方法与实践
  • DOI:
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    U. Kelle;Gerald Prein;Katherine Bird;Raymond M. Lee;N. Fielding;I. Dey;Tom Richards;L. Richards;S. Hesse;Paul Dupuis;G. L. Huber;U. Kuckartz;Edeltraud Roller;Rainer H. Mathes;Thomas A. Eckert;Charles C. Ragin
  • 通讯作者:
    Charles C. Ragin

Paul Dupuis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Dupuis', 18)}}的其他基金

Methods for Analysis and Optimization of Stochastic Systems with Model Uncertainty and Related Monte Carlo Schemes
具有模型不确定性的随机系统的分析和优化方法及相关蒙特卡罗方案
  • 批准号:
    1904992
  • 财政年份:
    2019
  • 资助金额:
    $ 12.43万
  • 项目类别:
    Continuing Grant
Large Deviation Methods for the Analysis and Design of Accelerated Monte Carlo Schemes
加速蒙特卡罗方案分析与设计的大偏差方法
  • 批准号:
    1317199
  • 财政年份:
    2013
  • 资助金额:
    $ 12.43万
  • 项目类别:
    Standard Grant
Fast simulation, large deviations, and associated Hamilton-Jacobi-Bellman equations
快速仿真、大偏差和相关的 Hamilton-Jacobi-Bellman 方程
  • 批准号:
    1008331
  • 财政年份:
    2010
  • 资助金额:
    $ 12.43万
  • 项目类别:
    Standard Grant
Importance Sampling and the Subsolutions of an Associated Isaacs Equation
重要性采样和相关 Isaacs 方程的子解
  • 批准号:
    0706003
  • 财政年份:
    2007
  • 资助金额:
    $ 12.43万
  • 项目类别:
    Standard Grant
Research on Stochastic Processes and Optimization
随机过程与优化研究
  • 批准号:
    0404806
  • 财政年份:
    2004
  • 资助金额:
    $ 12.43万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Education and Research on Stochastic Process Models in Telecommunication
GOALI:电信随机过程模型的协作教育和研究
  • 批准号:
    0306070
  • 财政年份:
    2003
  • 资助金额:
    $ 12.43万
  • 项目类别:
    Standard Grant
Research on Stochastic Processes and Optimization
随机过程与优化研究
  • 批准号:
    0072004
  • 财政年份:
    2000
  • 资助金额:
    $ 12.43万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research on Stochastic Processes and Optimization
数学科学:随机过程和优化研究
  • 批准号:
    9403820
  • 财政年份:
    1994
  • 资助金额:
    $ 12.43万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Stochastic Process Theory
数学科学:随机过程理论研究
  • 批准号:
    9115762
  • 财政年份:
    1991
  • 资助金额:
    $ 12.43万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research on Stochastic Process and Large Deviation Theory
数学科学:随机过程与大偏差理论研究
  • 批准号:
    8902333
  • 财政年份:
    1989
  • 资助金额:
    $ 12.43万
  • 项目类别:
    Standard Grant

相似国自然基金

α-稳定过程驱动的随机微分方程的极限行为研究
  • 批准号:
    12301175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分数布朗运动驱动的随机系统的同步化和正态偏差的研究
  • 批准号:
    12301172
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于模型的认知雷达动作策略随机优化过程非合作反演方法研究
  • 批准号:
    62301031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于借粒子方法的Lévy过程驱动的随机微分方程中的若干问题的研究
  • 批准号:
    12261038
  • 批准年份:
    2022
  • 资助金额:
    28.00 万元
  • 项目类别:
    地区科学基金项目
滚动运动中随机碰撞力学机理及灾变过程的研究
  • 批准号:
    12262021
  • 批准年份:
    2022
  • 资助金额:
    32.00 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
  • 批准号:
    10749856
  • 财政年份:
    2024
  • 资助金额:
    $ 12.43万
  • 项目类别:
Joint longitudinal and survival models for intensive longitudinal data from mobile health studies of smoking cessation
来自戒烟移动健康研究的密集纵向数据的联合纵向和生存模型
  • 批准号:
    10677935
  • 财政年份:
    2023
  • 资助金额:
    $ 12.43万
  • 项目类别:
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 12.43万
  • 项目类别:
Neural and behavioral mechanisms of song learning in zebra finches
斑胸草雀鸣叫学习的神经和行为机制
  • 批准号:
    10678601
  • 财政年份:
    2023
  • 资助金额:
    $ 12.43万
  • 项目类别:
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 12.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了