Large Deviation Methods for the Analysis and Design of Accelerated Monte Carlo Schemes
加速蒙特卡罗方案分析与设计的大偏差方法
基本信息
- 批准号:1317199
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main focus of the research program is the use of large deviation ideas for the design and analysis of accelerated Monte Carlo methods. In addition, the underlying large deviation theory will be developed where needed. The PIs will emphasize two classes of problems, which are (i) accelerating the convergence of an empirical measure to a target stationary distribution and (ii) the estimation of the probability of a single rare event. In prior work the PIs have initiated use of the large deviation rate for the empirical measure of a Markov process as a tool for algorithm analysis. By considering suitable limits of the already effective parallel tempering algorithm, they developed a new algorithm called infinite swapping, as well as computationally tractable variants called partial infinite swapping. The research program involves further theoretical development of the algorithm and the associated large deviation tools, as well as applications to challenging problems from materials science. With regard to the estimation of the probability of a rare event, the PIs will continue to develop an approach based on large deviations and subsolutions to an associated Hamilton-Jacobi-Bellman equation for the design and analysis of importance sampling and certain types of branching algorithms. The primary applications focus of the research program is the study of nanoscale materials. Because their basic physical and chemical properties can differ significantly from those of their bulk counterparts, such materials are of substantial practical and theoretical interest. Understanding how these basic properties are determined by the atomic-level details involved, an essential element in realizing the ultimate design potential of these systems, involves overcoming a number of rare event challenges. Monte Carlo algorithms are one of the most flexible and useful numerical tools in the applied sciences and engineering. They are used to solve a broad range of problems, such as determining thermodynamic properties in models from chemistry and material science, evaluating equilibrium properties in large scale networks, and in problems of classification and estimation in Bayesian statistics. However, with many Monte Carlo algorithms, rare events play a dominant role in determining the quality and hence usefulness of the resulting numerical approximation. An important example is the approximation of integrals via Markov chain Monte Carlo. These applications are very challenging when the distribution has pockets of significant probability and transitions between these pockets are rare. Another example is estimation of the probability of a single rare event, such as unexpectedly large payouts in insurance claims or the transition between metastable wells in a model from chemical physics. The PIs will develop and apply methods from large deviation theory, which is the branch of probability that analyzes and characterizes rare events, to the problem of efficient algorithm design. They will apply these algorithms to problems of materials science.
研究计划的主要重点是使用大偏差思想来设计和分析加速蒙特卡罗方法。此外,将在需要的地方发展潜在的大偏差理论。pi将强调两类问题,即(i)加速经验测量到目标平稳分布的收敛,以及(ii)估计单个罕见事件的概率。在先前的工作中,pi已经开始使用大偏差率作为马尔可夫过程的经验度量作为算法分析的工具。通过考虑已有的有效并行回火算法的适当限制,他们开发了一种新的算法,称为无限交换,以及计算上易于处理的变体,称为部分无限交换。研究计划包括进一步的理论发展算法和相关的大偏差工具,以及应用于材料科学的挑战性问题。关于罕见事件概率的估计,pi将继续开发一种基于大偏差和相关汉密尔顿-雅可比-贝尔曼方程的子解的方法,用于设计和分析重要抽样和某些类型的分支算法。该研究项目的主要应用重点是纳米材料的研究。由于它们的基本物理和化学性质可能与它们的块状对应物有很大的不同,因此这些材料具有重要的实践和理论意义。了解这些基本特性是如何由所涉及的原子级细节决定的,这是实现这些系统最终设计潜力的基本要素,涉及克服许多罕见事件挑战。蒙特卡罗算法是应用科学和工程中最灵活和最有用的数值工具之一。它们被用于解决广泛的问题,例如确定化学和材料科学模型中的热力学性质,评估大规模网络中的平衡性质,以及贝叶斯统计中的分类和估计问题。然而,对于许多蒙特卡罗算法,罕见事件在决定结果数值近似的质量和有用性方面起着主导作用。一个重要的例子是通过马尔可夫链蒙特卡罗逼近积分。当分布具有显著概率的口袋并且这些口袋之间的转换很少时,这些应用非常具有挑战性。另一个例子是估计单个罕见事件的概率,例如保险索赔中意外的巨额赔付或化学物理模型中亚稳态井之间的转换。pi将开发和应用从大偏差理论(分析和表征罕见事件的概率分支)到高效算法设计问题的方法。他们将把这些算法应用于材料科学问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Dupuis其他文献
Explicit Solution for a Network Control Problem in the Large Deviation Regime
- DOI:
10.1023/b:ques.0000021147.09071.e3 - 发表时间:
2004-01-01 - 期刊:
- 影响因子:0.700
- 作者:
Rami Atar;Adam Shwartz;Paul Dupuis - 通讯作者:
Paul Dupuis
Risk-Sensitive and Robust Escape Control for Degenerate Diffusion Processes
- DOI:
10.1007/pl00009877 - 发表时间:
2001-03-01 - 期刊:
- 影响因子:1.800
- 作者:
Michelle Boué;Paul Dupuis - 通讯作者:
Paul Dupuis
Large deviations for Markov processes with discontinuous statistics, II: random walks
- DOI:
10.1007/bf01291423 - 发表时间:
1992-06-01 - 期刊:
- 影响因子:1.600
- 作者:
Paul Dupuis;Richard S. Ellis - 通讯作者:
Richard S. Ellis
Large deviations and importance sampling for a tandem network with slow-down
- DOI:
10.1007/s11134-007-9048-3 - 发表时间:
2007-11-06 - 期刊:
- 影响因子:0.700
- 作者:
Paul Dupuis;Kevin Leder;Hui Wang - 通讯作者:
Hui Wang
Ab initio studies of the interactions in Van der Waals molecules
范德华分子相互作用的从头算研究
- DOI:
- 发表时间:
1980 - 期刊:
- 影响因子:0
- 作者:
A. Avoird;P. Wormer;F. Mulder;R. Berns;Pavel Hobza;Rudolf Zahradnik;Ginette Trudeau;Paul Dupuis;Camille Sandorfy;Jean;Maurice Guérin - 通讯作者:
Maurice Guérin
Paul Dupuis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Dupuis', 18)}}的其他基金
Methods for Analysis and Optimization of Stochastic Systems with Model Uncertainty and Related Monte Carlo Schemes
具有模型不确定性的随机系统的分析和优化方法及相关蒙特卡罗方案
- 批准号:
1904992 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Fast simulation, large deviations, and associated Hamilton-Jacobi-Bellman equations
快速仿真、大偏差和相关的 Hamilton-Jacobi-Bellman 方程
- 批准号:
1008331 - 财政年份:2010
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Importance Sampling and the Subsolutions of an Associated Isaacs Equation
重要性采样和相关 Isaacs 方程的子解
- 批准号:
0706003 - 财政年份:2007
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Research on Stochastic Processes and Optimization
随机过程与优化研究
- 批准号:
0404806 - 财政年份:2004
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
GOALI: Collaborative Education and Research on Stochastic Process Models in Telecommunication
GOALI:电信随机过程模型的协作教育和研究
- 批准号:
0306070 - 财政年份:2003
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Research on Stochastic Processes and Optimization
随机过程与优化研究
- 批准号:
0072004 - 财政年份:2000
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Research on Stochastic Processes and Optimization
随机过程与优化研究
- 批准号:
9704426 - 财政年份:1997
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research on Stochastic Processes and Optimization
数学科学:随机过程和优化研究
- 批准号:
9403820 - 财政年份:1994
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research in Stochastic Process Theory
数学科学:随机过程理论研究
- 批准号:
9115762 - 财政年份:1991
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research on Stochastic Process and Large Deviation Theory
数学科学:随机过程与大偏差理论研究
- 批准号:
8902333 - 财政年份:1989
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似海外基金
Measurement of L2 pronunciation deviation and L2 listening disfluency and its application to prosody training for smooth international communication
二语发音偏差和二语听力不流利度测量及其在国际交流顺畅韵律训练中的应用
- 批准号:
23K17459 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Large deviation estimates for occupation times of intermittent maps
间歇地图占用时间的大偏差估计
- 批准号:
23K19010 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Quantifying a deviation between tsunami inundation and sedimentation by numerical experiments focusing on "slow tsunamis"
通过以“慢海啸”为中心的数值实验来量化海啸淹没和沉积之间的偏差
- 批准号:
23K13177 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Large Deviation Principles for Coulomb-Type Flows
库仑型流动的大偏差原理
- 批准号:
557776-2021 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Postgraduate Scholarships - Doctoral
Predicting psychosis risk in youth using a novel structural neuroimaging score that measures deviation from normative development. Can we bring it to communities using portable, low-field MRI?
使用一种新颖的结构神经影像评分来预测青少年的精神病风险,该评分可测量偏离规范发展的情况。
- 批准号:
10435204 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Large deviation principle and metastability for lattice gas
晶格气体大偏差原理及亚稳态
- 批准号:
22K13929 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Predicting psychosis risk in youth using a novel structural neuroimaging score that measures deviation from normative development. Can we bring it to communities using portable, low-field MRI?
使用一种新颖的结构神经影像评分来预测青少年的精神病风险,该评分可测量偏离规范发展的情况。
- 批准号:
10614565 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
DMS-EPSRC Sharp Large Deviation Estimates of Fluctuations in Stochastic Hydrodynamic Systems
随机流体动力系统波动的 DMS-EPSRC 急剧大偏差估计
- 批准号:
EP/V013319/1 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Research Grant
Large Deviation Principles for Coulomb-Type Flows
库仑型流动的大偏差原理
- 批准号:
557776-2021 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Postgraduate Scholarships - Doctoral
DMS-EPSRC Collaborative Research: Sharp Large Deviation Estimates of Fluctuations in Stochastic Hydrodynamic Systems
DMS-EPSRC 合作研究:随机水动力系统波动的急剧大偏差估计
- 批准号:
2012510 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant