Disordered Systems, Supersymmetry, and Topological Phases
无序系统、超对称性和拓扑相
基本信息
- 批准号:0706195
- 负责人:
- 金额:$ 41.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:This award supports theoretical research and education in low temperature phenomena in both classical and quantum condensed matter systems. Specifically, these include the quantum Hall regime in a two-dimensional electron gas in a high magnetic field, with the goal of understanding the non-Abelian topological phases of matter in this and other systems. Included in the investigations is the possibility of using such systems for topological quantum computation. Another focus is disordered systems, including non-interacting fermions in two dimensions as in the integer quantum Hall effect, with the use of algebraic techniques applied to lattice models and conformal field theory of critical points. Disordered systems arising from optimization and their connections with statistical physics problems such as spin glasses will also be addressed.NON-TECHNICAL SUMMARY:This award supports theoretical research and education in theoretical condensed matter physics at the interface with mathematics. With the discovery that the electric conductivity of thin materials sandwiched into thin layers in a magnetic field was fixed to certain discrete amounts, that was the beginning of research on the quantum hall effect. The electrons confined to a thin layer exhibit unusual structures because of the quantum mechanical laws that govern motion for small particles at small distances. This has proven to be an extraordinarily rich topics because of the many usual behaviors, some reflecting new states of matter. Research in this grant involves the specific topics of electrons confined to layers and includes some investigation of new states of matter associated with the fractional quantum hall effect. Since the prediction of these new states of matter, it has also become possible that the unusual properties of some of them could be the basis for new kinds of computers, so called topological quantum computers. The operation of these computers would be particularly resistant to noise from the environment that normally spoils essential properties of quantum mechanical states. Learning more about these exotic quantum systems so that they may be of potential technological value requires highly sophisticated mathematics and the creativity behind theoretical physics. The ideas and fundamental knowledge generated by endeavors such as these contribute to future technologies not yet envisioned, but contribute to the foundation of this Nation's future success in global economic competition.
技术概述:该奖项支持在经典和量子凝聚态系统低温现象的理论研究和教育。具体来说,这些包括高磁场下二维电子气体中的量子霍尔制度,目的是了解该系统和其他系统中物质的非阿贝尔拓扑相。在研究中包括使用这种系统进行拓扑量子计算的可能性。另一个重点是无序系统,包括二维的非相互作用费米子,如整数量子霍尔效应,使用代数技术应用于晶格模型和临界点的共形场理论。由优化引起的无序系统及其与统计物理问题(如自旋玻璃)的联系也将被讨论。非技术总结:该奖项支持理论凝聚态物理与数学界面的理论研究和教育。由于发现夹在磁场中薄层的薄材料的电导率固定在一定的离散量,这是量子霍尔效应研究的开始。由于控制小粒子在小距离上运动的量子力学定律,被限制在薄层上的电子表现出不同寻常的结构。这已经被证明是一个非常丰富的话题,因为许多通常的行为,一些反映了物质的新状态。这项拨款的研究涉及限于层内电子的特定主题,并包括与分数量子霍尔效应相关的物质新状态的一些研究。由于预测了这些物质的新状态,其中一些不寻常的特性也有可能成为新型计算机的基础,即所谓的拓扑量子计算机。这些计算机的运行将特别能抵抗来自环境的噪声,这些噪声通常会破坏量子力学状态的基本属性。更多地了解这些奇异的量子系统,以便它们可能具有潜在的技术价值,需要高度复杂的数学和理论物理背后的创造力。这些努力所产生的思想和基础知识对未来的技术做出了不可想象的贡献,但也为美国未来在全球经济竞争中取得成功奠定了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Read其他文献
Morphological observations on the fate of liposomes in the regional lymph nodes after footpad injection into rats.
大鼠足垫注射后脂质体在区域淋巴结中去向的形态学观察。
- DOI:
10.1016/0005-2760(95)00208-1 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Maria J. Velinova;Nicholas Read;Christopher J. Kirby;Gregory Gregoriadis - 通讯作者:
Gregory Gregoriadis
Clarification of braiding statistics in Fabry–Perot interferometry
法布里-珀罗干涉测量中编织统计的澄清
- DOI:
10.1038/s41567-023-02309-8 - 发表时间:
2023-11-27 - 期刊:
- 影响因子:18.400
- 作者:
Nicholas Read;Sankar Das Sarma - 通讯作者:
Sankar Das Sarma
Statistical models for the location of lightning-caused wildfire ignitions
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Nicholas Read - 通讯作者:
Nicholas Read
Nicholas Read的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Read', 18)}}的其他基金
Topological and Disordered Phases of Matter
物质的拓扑相和无序相
- 批准号:
1724923 - 财政年份:2018
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
Topological phases of matter and disordered systems
物质的拓扑相和无序系统
- 批准号:
1408916 - 财政年份:2014
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
Topological Phases, Supersymmetry, and Disordered Systems
拓扑相、超对称性和无序系统
- 批准号:
1005895 - 财政年份:2010
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
Disordered Systems, Supersymmetry, and Quantum Hall Effect
无序系统、超对称性和量子霍尔效应
- 批准号:
0242949 - 财政年份:2003
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
Quantum Hall Effect and Disordered Systems
量子霍尔效应和无序系统
- 批准号:
9818259 - 财政年份:1999
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
Presidential Young Investigator Award
总统青年研究员奖
- 批准号:
9157484 - 财政年份:1991
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
- 批准号:
10109981 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
EU-Funded
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
- 批准号:
10079892 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Legacy Department of Trade & Industry
Digital chemistry and catalysis: redefining reactions in confined systems
数字化学和催化:重新定义受限系统中的反应
- 批准号:
FL220100059 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Australian Laureate Fellowships
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
- 批准号:
DP240100506 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Discovery Projects
Linking Australia’s basement and cover mineral systems
连接澳大利亚的地下室和覆盖矿物系统
- 批准号:
DE240101283 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Discovery Early Career Researcher Award
Phase Averaged Deferred Correction for Multi-Timescale Systems
多时间尺度系统的相位平均延迟校正
- 批准号:
EP/Y032624/1 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Research Grant
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
- 批准号:
MR/Y011635/1 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Fellowship
Managing the Activity of Pollinators in Protected Cropping Systems (MAPP-CS)
管理保护性耕作系统中授粉媒介的活动 (MAPP-CS)
- 批准号:
BB/Z514366/1 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Research Grant
SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
- 批准号:
EP/X036006/1 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Research Grant