Topological Phases, Supersymmetry, and Disordered Systems
拓扑相、超对称性和无序系统
基本信息
- 批准号:1005895
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences provide funds for this award. It supports theoretical research and education in the area of low-temperature phenomena in both classical and quantum condensed matter systems. Specifically, these include the quantum Hall regime of an electron gas that occurs in a two-dimensional electron gas in a high magnetic field, with the goal of understanding the non-Abelian topological phases of matter in this and other systems in greater depth. There is now a large experimental and theoretical effort aimed at using such systems for topological quantum computation. Another focus is disordered systems, including non-interacting fermions in two dimensions as in the integer quantum Hall effect, with the use of algebraic techniques applied to lattice models and conformal field theory of critical points. Disordered systems arising from optimization and their connections with statistical physics problems such as classical spin glasses will also be addressed. While the research will concentrate on deepening the understanding of fundamental properties, applications to experiments will be made wherever possible.NONTECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences provide funds for this award. It supports theoretical research and education at the interface of condensed matter physics and mathematics. The ability of electrons sandwiched between semiconductors into thin layers in a high magnetic field to conduct electricity is fixed in discrete amounts. Theory predicts that these remarkable quantum Hall effects signal that electrons in two dimensions in a magnetic field can organize themselves into subtle new states of matter. This award supports research that further explores the nature of these states. Since their prediction, it has been realized that the unusual properties of these new states of matter can form the basis for new kinds of computers, so called topological quantum computers. The operation of these computers would be particularly resistant to noise from the environment that normally spoils essential properties of quantum mechanical states. Learning more about exotic quantum mechanical systems and materials and revealing their technological value requires highly sophisticated mathematics and the creativity behind theoretical physics. The ideas and fundamental knowledge generated by endeavors such as these contribute to future technologies not yet envisioned, but contribute to the foundation of this Nation's future success in global economic competition.
材料研究部和数学科学部为该奖项提供资金。它支持经典和量子凝聚态系统中低温现象领域的理论研究和教育。具体来说,这些包括在高磁场中的二维电子气中发生的电子气的量子霍尔机制,其目标是更深入地理解这个系统和其他系统中物质的非阿贝尔拓扑相。现在有大量的实验和理论努力,旨在使用这样的系统拓扑量子计算。 另一个重点是无序系统,包括在整数量子霍尔效应中的二维非相互作用费米子,使用代数技术应用于晶格模型和临界点的共形场论。无序系统所产生的优化和它们与统计物理问题,如经典自旋玻璃的连接也将得到解决。虽然研究将集中在加深对基本性质的理解,但将尽可能地应用于实验。非技术性总结材料研究部和数学科学部为该奖项提供资金。它支持凝聚态物理和数学界面的理论研究和教育。 在强磁场中,夹在半导体薄层之间的电子导电的能力是固定的。理论预测,这些显著的量子霍尔效应表明,磁场中的二维电子可以将自己组织成微妙的新物质状态。 该奖项支持进一步探索这些国家的性质的研究。自从他们的预测,人们已经意识到,这些新的物质状态的不寻常的属性可以形成新类型的计算机,所谓的拓扑量子计算机的基础。这些计算机的运行将特别抵抗来自环境的噪声,这些噪声通常会破坏量子力学状态的基本特性。更多地了解奇异的量子力学系统和材料,并揭示它们的技术价值,需要高度复杂的数学和理论物理背后的创造力。这些努力所产生的想法和基本知识有助于未来的技术尚未设想,但有助于这个国家在全球经济竞争中未来成功的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Read其他文献
Morphological observations on the fate of liposomes in the regional lymph nodes after footpad injection into rats.
大鼠足垫注射后脂质体在区域淋巴结中去向的形态学观察。
- DOI:
10.1016/0005-2760(95)00208-1 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Maria J. Velinova;Nicholas Read;Christopher J. Kirby;Gregory Gregoriadis - 通讯作者:
Gregory Gregoriadis
Clarification of braiding statistics in Fabry–Perot interferometry
法布里-珀罗干涉测量中编织统计的澄清
- DOI:
10.1038/s41567-023-02309-8 - 发表时间:
2023-11-27 - 期刊:
- 影响因子:18.400
- 作者:
Nicholas Read;Sankar Das Sarma - 通讯作者:
Sankar Das Sarma
Statistical models for the location of lightning-caused wildfire ignitions
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Nicholas Read - 通讯作者:
Nicholas Read
Nicholas Read的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Read', 18)}}的其他基金
Topological and Disordered Phases of Matter
物质的拓扑相和无序相
- 批准号:
1724923 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Topological phases of matter and disordered systems
物质的拓扑相和无序系统
- 批准号:
1408916 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Disordered Systems, Supersymmetry, and Topological Phases
无序系统、超对称性和拓扑相
- 批准号:
0706195 - 财政年份:2007
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Disordered Systems, Supersymmetry, and Quantum Hall Effect
无序系统、超对称性和量子霍尔效应
- 批准号:
0242949 - 财政年份:2003
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Quantum Hall Effect and Disordered Systems
量子霍尔效应和无序系统
- 批准号:
9818259 - 财政年份:1999
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似国自然基金
Zintl Phases点缺陷结构与热电性能调控
- 批准号:51771105
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Investigating liquid-like mineral phases in crowded media
研究拥挤介质中的液态矿物相
- 批准号:
EP/Y022653/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Controllable quantum phases in two-dimensional metal-organic nanomaterials
二维金属有机纳米材料中的可控量子相
- 批准号:
DP240102006 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Discovery Projects
CAREER: The influence of cation substitution on the hydrous phases of the lower mantle
事业:阳离子取代对下地幔水相的影响
- 批准号:
2338444 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
CAREER: Elucidating the Formation and Evolution of Metastable Phases in Fluorite-Structured Ferroelectrics using Advanced Electron Microscopy
职业:使用先进电子显微镜阐明萤石结构铁电体中亚稳相的形成和演化
- 批准号:
2338558 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Quantifying molecular interactions linking disordered and ordered phases to predict crystallisation
量化连接无序相和有序相的分子相互作用以预测结晶
- 批准号:
EP/Z00005X/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
CAREER: Designing and Probing Emergent Phases with Tunable Magnons in Graphene
职业:利用石墨烯中的可调磁振子设计和探测涌现相
- 批准号:
2339623 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Group IV Semiconductors Derived From Zintl Phases
Zintl 相衍生的 IV 族半导体
- 批准号:
2350483 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Discovery of Self-Assembled Network Phases And Metallic Nanostructures Driven by Confinement
限制驱动的自组装网络相和金属纳米结构的发现
- 批准号:
2411155 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Development of tensor network renormalization group method for high dimensions and new understanding of quantum liquid phases
高维张量网络重整化群方法的发展及对量子液相的新认识
- 批准号:
23H01092 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Designing topological superconductivity and correlated phases in Van der Waals materials
职业:设计范德华材料中的拓扑超导性和相关相
- 批准号:
2238748 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant