Three-dimensional topology and some four-dimensional contexts

三维拓扑和一些四维上下文

基本信息

  • 批准号:
    0706740
  • 负责人:
  • 金额:
    $ 15.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

Scharlemann's recent research has centered on the theory of classical knots and of 3-manifolds, in particular on the use of Heegaard splittings and of related notions (eg bridge positionings, tunnel number) from classical knot theory. The focus is typically on the behavior of surfaces contained in the 3-manifolds (a classical approach) but in a more sophisticated way. Added to old-fashioned combinatorial arguments on surface intersections are ideas from graph theory; added to the classic study of hierarchies on 3-manifolds is Gabai's notion of sutured manifold decomposition, in which parameterizing surfaces and estimates of the Thurston norm help control and understand the topology of the hierarchy; and, added to the classic tool of Morse theory, is the minimax principle of thin position, in which handles of a given index are added not all at once, but as slowly as possible. Recently Scharlemann has gotten interested in how these and similar new tools can also be used towards resolving questions in the topology of 4-manifolds. For example, his recent proof of the genus three Schoenflies Conjecture began with an effort to prove the full Schoenflies Conjecture with, among other ideas, a 4-dimensional application of thin position. The proof of the genus three case (which includes ideas on the general problem and its connection to Property R) also integrates Heegaard theory into this important 4-dimensional problem through the natural use of Heegaard unions. These may be only the first steps of a useful application of 3-manifold ideas to those intriguing topological questions which are sometimes called (3 + 1)-dimensional because they ask how 3- and 4-dimensional manifolds are interrelated. A focus of Scharlemann's interest for many years has been the topology of 3-manifolds. To explain: one of the most basic observations about the world around us, apparent almost from our birth, is that it is 3-dimensional. So it is of interest to understand objects with precisely this property: anyone living in one would see their world as 3-dimensional. Such objects are called ``3-manifolds", and the broad goal of this research proposal is to increase our understanding of them. Of particular (but not sole) interest is what our emerging understanding of 3-dimensional manifolds can tell us about some old and important questions concerning 4-dimensional manifolds. Such 4-manifolds also connect to our natural experience, when we incorporate time as well as space into our thinking. The particular emphasis in this proposal is on questions that sit on the edge between 3- and 4-dimensional manifold theory. Both of these dimensions are interesting in part because they model the universe in which we live.
沙尔曼最近的研究集中在理论的经典结和3-流形,特别是对使用Heegaard分裂和相关概念(如桥梁positionings,隧道数)从经典结理论。 重点通常是在3-流形(经典方法)中包含的曲面的行为,但以更复杂的方式。 除了关于曲面相交的老式组合论证之外,还有来自图论的思想;除了对三维流形上的层次结构的经典研究之外,还有Gabai的缝合流形分解的概念,其中参数化曲面和Thurston范数的估计有助于控制和理解层次结构的拓扑结构;并且,添加到莫尔斯理论的经典工具,是瘦位置的极小极大原则,其中给定索引的句柄不是一次全部添加,而是尽可能缓慢地添加。 最近Scharlemann感兴趣的是如何这些和类似的新工具也可以用来解决问题的拓扑结构的4流形。 例如,他最近证明属三Schoenflies猜想开始努力证明充分Schoenflies猜想,除其他想法,4维应用薄的立场。 亏格3的证明(包括一般问题的思想及其与性质R的联系)也通过Heegaard并的自然使用将Heegaard理论整合到这个重要的四维问题中。 这些可能只是第一步的一个有用的应用程序的3流形的想法,这些有趣的拓扑问题,有时被称为(3 + 1)维,因为他们问如何3和4维流形是相互关联的。一个重点Scharlemann的兴趣多年来一直是拓扑结构的3流形。 解释一下:关于我们周围世界的最基本的观察之一,几乎从我们出生时就很明显,就是它是三维的。 因此,理解具有这种性质的物体是很有趣的:任何生活在其中的人都会把他们的世界看作是三维的。 这样的物体被称为“3-流形”,这项研究提案的总体目标是增加我们对它们的理解。 特别(但不是唯一)的兴趣是我们对三维流形的新认识可以告诉我们关于四维流形的一些古老而重要的问题。 当我们将时间和空间纳入我们的思维时,这种四维流形也与我们的自然经验相联系。 该提案特别强调位于3维和4维流形理论之间的问题。 这两个维度都很有趣,部分原因是它们模拟了我们生活的宇宙。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Scharlemann其他文献

The subgroup of Δ2 generated by automorphisms of tori
  • DOI:
    10.1007/bf01428946
  • 发表时间:
    1980-10-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Martin Scharlemann
  • 通讯作者:
    Martin Scharlemann
An Introductory Course on Mathematical Game Theory
数学博弈论入门课程
  • DOI:
    10.1090/gsm/115
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julio González;I. García;M. G. Fiestras;R. Mazzeo;Martin Scharlemann;G. Staffilani;Luis Aĺıas;Alberto Elduque;Emilio Carrizosa;Rosa Maŕıa Miró;Bernardo Cascales;Pablo Pedregal;J. Duoandikoetxea;Juan Soler
  • 通讯作者:
    Juan Soler
Tangles, propertyP, and a problem of J. Martin
  • DOI:
    10.1007/bf01451402
  • 发表时间:
    1986-06-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Steven Bleiler;Martin Scharlemann
  • 通讯作者:
    Martin Scharlemann
The fundamental group of fibered knot cobordisms
  • DOI:
    10.1007/bf01425240
  • 发表时间:
    1977-10-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Martin Scharlemann
  • 通讯作者:
    Martin Scharlemann

Martin Scharlemann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Scharlemann', 18)}}的其他基金

Exploring problems in 3- and (3+1)-dimensional topology
探索 3 维和 (3 1) 维拓扑中的问题
  • 批准号:
    1005661
  • 财政年份:
    2010
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Topology and Sweep-Out Combinatorics Near Dimension Three
三维附近的拓扑和扫除组合学
  • 批准号:
    0405712
  • 财政年份:
    2004
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Low-Dimensional Topology
数学科学:低维拓扑问题
  • 批准号:
    9504438
  • 财政年份:
    1995
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Knotting in 3-Manifolds
数学科学:3-流形中的结
  • 批准号:
    9203522
  • 财政年份:
    1992
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Dehn Surgery and 3-Manifold Theory
数学科学:Dehn 手术和三流形理论
  • 批准号:
    9102633
  • 财政年份:
    1991
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topology & Geometry
数学科学:拓扑
  • 批准号:
    8901065
  • 财政年份:
    1989
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Connections Between Geometry and LinkPolynomials
数学科学:几何与链接多项式之间的联系
  • 批准号:
    8810683
  • 财政年份:
    1988
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Surfaces and 3 Manifolds
数学科学:曲面和 3 个流形
  • 批准号:
    8601518
  • 财政年份:
    1986
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Problems of Low-Dimensional Manifolds
数学科学:低维流形问题
  • 批准号:
    8401585
  • 财政年份:
    1984
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regional Conference on Yang-Mills Theory and the Topology of 4-Manifolds; University of California; Santa Barbara, California; August 1-5, 1983
数学科学:杨-米尔斯理论和 4-流形拓扑区域会议;
  • 批准号:
    8303890
  • 财政年份:
    1983
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
  • 批准号:
    81150011
  • 批准年份:
    2011
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
肝脏管道系统数字化及三维成像的研究
  • 批准号:
    30470493
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Floer for Three: Symplectic Methods in Low-Dimensional Topology
三人花:低维拓扑中的辛方法
  • 批准号:
    2204214
  • 财政年份:
    2022
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing Grant
Generation of new three-dimensional structure of permanent magnet motors using topology optimization
利用拓扑优化生成新型永磁电机三维结构
  • 批准号:
    21H01301
  • 财政年份:
    2021
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: The Fate of Topology in Disordered Three-Dimensional Materials
职业:无序三维材料中拓扑的命运
  • 批准号:
    1941569
  • 财政年份:
    2020
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing Grant
Three-Dimensional Active Liquid Crystals: Defects and Topology
三维活性液晶:缺陷和拓扑
  • 批准号:
    2435558
  • 财政年份:
    2020
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Studentship
RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
  • 批准号:
    1906323
  • 财政年份:
    2019
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Quantum invariants and hyperbolic manifolds in three-dimensional topology
三维拓扑中的量子不变量和双曲流形
  • 批准号:
    DP160103085
  • 财政年份:
    2016
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Discovery Projects
Three-dimensional topology optimization method for energy harvesting electromagnetic device
能量收集电磁装置三维拓扑优化方法
  • 批准号:
    15K13856
  • 财政年份:
    2015
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Topology Optimisation for Three-dimensional Periodic Nanophotonic Structures
三维周期性纳米光子结构的拓扑优化
  • 批准号:
    FT130101094
  • 财政年份:
    2014
  • 资助金额:
    $ 15.78万
  • 项目类别:
    ARC Future Fellowships
Embedded and Immersed Surfaces in Three-Dimensional Topology
三维拓扑中的嵌入式和浸入式表面
  • 批准号:
    1308767
  • 财政年份:
    2013
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Knots and surfaces in three- and four-manifolds: Applications of symplectic topology and quantum algebra to low dimensional topology
三流形和四流形中的结和表面:辛拓扑和量子代数在低维拓扑中的应用
  • 批准号:
    0906258
  • 财政年份:
    2009
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了