Embedded and Immersed Surfaces in Three-Dimensional Topology
三维拓扑中的嵌入式和浸入式表面
基本信息
- 批准号:1308767
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The guiding question in three-dimensional topology is the classification problem for three-dimensional manifolds - to construct a list in which every homeomorphism type appears exactly once. The PI will both address this question and explore applications of the resulting methods to the topology of large data sets in three components: First, the PI will expand and refine techniques developed recently by Minsky, Namazi, Souto and others to related hyperbolic geometry to topology via Teichmuller theory. Second, the PI will generalize these techniques to answer questions about finite covers of three-dimensional manifolds suggested by the recent proof of the Virtual Haken Conjecture. Third, the PI will explore applications of these topological techniques to data analysis in order to develop and refine new algorithms that will be useful to scientists in a broad range of fields.A 3-dimensional manifold is a topological space that models the 3-dimensional universe in which we live. Heegaard splittings are topological structures that allow one to see such a space as a pair of simple pieces that have been combined in a possibly complicated manner. While Heegaard splittings have been studied for over a century, our knowledge of Heegaard splittings has only in the last two decades matured to the point where they can be thoroughly understood. They are now an integral part of understanding geometric structures on 3-manifolds and knots. Moreover, recent developments have demonstrated that techniques (particularly one called thin position) used in the abstract study of Heegaard splittings can be adapted to work on certain problems in applied mathematics, particularly the analysis of large data sets. The research funded by this grant will develop both the abstract and the applied aspects of this field.
三维拓扑学的指导问题是三维流形的分类问题——构造一个表,其中每个同胚类型只出现一次。PI将通过三个组成部分来解决这个问题,并探索由此产生的方法在大型数据集拓扑中的应用:首先,PI将扩展和完善Minsky、Namazi、Souto等人最近开发的技术,通过Teichmuller理论将双曲几何与拓扑联系起来。其次,PI将推广这些技术来回答最近由虚哈肯猜想的证明所提出的关于三维流形有限覆盖的问题。第三,PI将探索这些拓扑技术在数据分析中的应用,以开发和完善新的算法,这些算法将对广泛领域的科学家有用。三维流形是一个拓扑空间,它模拟了我们生活的三维宇宙。高分裂是一种拓扑结构,它允许人们把这样一个空间看作是一对简单的碎片,它们以一种可能复杂的方式组合在一起。虽然heegard分裂已经被研究了一个多世纪,但我们对heegard分裂的了解直到最近二十年才成熟到可以彻底理解的程度。它们现在是理解3流形和结的几何结构的一个组成部分。此外,最近的发展表明,在heeggaard分裂的抽象研究中使用的技术(特别是称为薄位置的技术)可以适用于应用数学中的某些问题,特别是对大型数据集的分析。该基金资助的研究将发展该领域的抽象和应用方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Jaco其他文献
Finitely presented subgroups of three-manifold groups
- DOI:
10.1007/bf01406083 - 发表时间:
1971-12-01 - 期刊:
- 影响因子:3.600
- 作者:
William Jaco - 通讯作者:
William Jaco
Efficient triangulations and boundary slopes
- DOI:
10.1016/j.topol.2021.107689 - 发表时间:
2021-06-15 - 期刊:
- 影响因子:
- 作者:
Birch Bryant;William Jaco;J. Hyam Rubinstein - 通讯作者:
J. Hyam Rubinstein
$$\mathbb Z _2$$ -Thurston norm and complexity of 3-manifolds
- DOI:
10.1007/s00208-012-0824-y - 发表时间:
2012-06-21 - 期刊:
- 影响因子:1.400
- 作者:
William Jaco;J. Hyam Rubinstein;Stephan Tillmann - 通讯作者:
Stephan Tillmann
William Jaco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Jaco', 18)}}的其他基金
The Mathematical Inquiry Project: Faculty Instructional Change for Enhanced Student Learning and Success in Entry-Level Mathematics
数学探究项目:教师教学改革以增强学生的学习和入门级数学的成功
- 批准号:
1821545 - 财政年份:2018
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Strategic Direction for Mathematics Learning by Inquiry
探究式数学学习的策略方向
- 批准号:
1735643 - 财政年份:2017
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Efficient Triangulations, Decision Problems & Algorithms
高效的三角测量、决策问题
- 批准号:
0505609 - 财政年份:2005
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Efficient Triangulations of Three-Manifolds
三流形的高效三角剖分
- 批准号:
0204707 - 财政年份:2002
- 资助金额:
$ 19.44万 - 项目类别:
Continuing Grant
Essential Surfaces in Knot Exteriors: The Lopez Conjecture
结外部的基本表面:洛佩兹猜想
- 批准号:
9978071 - 财政年份:2000
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Efficient Triangulations and Normal Surface Theory
高效的三角测量和法线表面理论
- 批准号:
9971719 - 财政年份:1999
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Mathematical Sciences: Efficient Triangulations and Normal Surface Theory
数学科学:高效三角测量和法向曲面理论
- 批准号:
9704833 - 财政年份:1997
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Mathematical Sciences: Research Conference on Analytic Number Theory and Diophantine Problems; Stillwater, Oklahoma; June 12-20, 1984
数学科学:解析数论与丢番图问题研究会议;
- 批准号:
8413414 - 财政年份:1984
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric and Low-Dimensional Topology
数学科学:几何和低维拓扑
- 批准号:
8403571 - 财政年份:1984
- 资助金额:
$ 19.44万 - 项目类别:
Continuing Grant
相似海外基金
Study of value distribution of Gauss maps and its applications to global property of immersed surfaces in space forms
高斯图值分布及其在空间形式浸没曲面全局特性中的应用研究
- 批准号:
19K03463 - 财政年份:2019
- 资助金额:
$ 19.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of value distribution theory of Gauss maps of immersed surfaces in space forms and their applications to global property of surfaces
空间形式浸入曲面高斯图值分布理论的发展及其在曲面全局性质中的应用
- 批准号:
15K04840 - 财政年份:2015
- 资助金额:
$ 19.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on the relationship between the global property of immersed surfaces in space forms and the behavior of their Gauss maps
空间形式浸没表面的全局特性与其高斯图行为之间的关系研究
- 批准号:
24740044 - 财政年份:2012
- 资助金额:
$ 19.44万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A study on global properties of immersed surfaces in space forms from the viewpoint of their Gauss maps
从高斯图的角度研究空间形式浸没表面的全局特性
- 批准号:
21740053 - 财政年份:2009
- 资助金额:
$ 19.44万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis of drag-reducing air-water interfaces: Identifying technical surfaces which are able to hold persistent air layers according to immersed biological objects
减阻空气-水界面分析:根据浸没的生物物体识别能够保持持久空气层的技术表面
- 批准号:
39399990 - 财政年份:2007
- 资助金额:
$ 19.44万 - 项目类别:
Research Grants
Essential laminations and immersed essential surfaces in 3-manifolds
3 歧管中的基本叠片和浸入式基本表面
- 批准号:
0220439 - 财政年份:2001
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Essential laminations and immersed essential surfaces in 3-manifolds
3 歧管中的基本叠片和浸入式基本表面
- 批准号:
0102316 - 财政年份:2001
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
The Influence of Bed Fluid Dynamics on the Heat Transfer to Surfaces Immersed in a Fluidized Bed: Bed Scale Up, Particle Shape, and Particle Size Distribution
床流体动力学对浸没在流化床中的表面的传热的影响:床规模扩大、颗粒形状和粒度分布
- 批准号:
8005674 - 财政年份:1980
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Forced wetting and de-wetting on complex surfaces – Generic configuration immersed body (A01)
复杂表面上的强制润湿和去湿 â 通用配置浸入体 (A01)
- 批准号:
319328376 - 财政年份:
- 资助金额:
$ 19.44万 - 项目类别:
Collaborative Research Centres