Determinants of Elliptic Operators in Geometry, Number Theory, and Physics

几何、数论和物理学中椭圆算子的行列式

基本信息

  • 批准号:
    0706837
  • 负责人:
  • 金额:
    $ 11.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

In this project we continue to study the complex valued refinement of the Ray-Singer analytic torsion introduced in our joint paper with T. Kappeler. This study will lead to new properties of both the Ray-Singer torsion and the eta-invariant. In particular, we suggest a refined version of the Bismut-Lott higher analytic torsion which contains more information and is easier to study than the original higher torsion. We also suggest a version of the refined analytic torsion for complex Calabi-Yau manifolds. This will lead to applications in number theory. In particular, to a multi-dimensional generalization of the Dedekind eta-function. We also consider a new regularization procedure for definition of the trace and the determinant of certain class of pseudo-differential operators on odd-dimensional manifolds. This procedure allows to avoid many anomalies coursed by usual zeta-function regularization. It also turns out to be the most adequate for description of non-linear sigma-models of superconductivity. In a joint project with A. Abanov we suggest to use this regularization to get a first mathematically rigorous computation of the Berry phase in some of these models.We propose a new geometric invariant of compact manifolds which combines two classical invariants - the Ray-Singer torsion and the Atiyah-Patodi-Singer eta-invariant. Our construction allows to study both invariants simultaneously and leads to discovery of new properties of them. A similar invariant for complex manifolds leads to new applications in complex geometry and number theory. The definition of the new invariant is based on the study of determinants of non-self-adjoint differential operators. We suggest a new construction of such determinants, which, in some cases, behaves better than the usual one, and which is more adequate for description of certain models of superconductivity. Using this construction we suggest a first rigorous approach to these models.
在这个项目中,我们继续研究在我们与T。卡普勒这项研究将导致Ray-Singer挠率和η-不变量的新性质。特别是,我们提出了一个改进的版本的Bismut-Lott高解析挠包含更多的信息,更容易研究比原来的高挠。我们还提出了一个版本的复杂的Calabi-Yau流形的精细解析挠。这将导致数论中的应用。具体地,涉及戴德金η函数的多维推广。我们还考虑了奇维流形上一类伪微分算子的迹和行列式的一种新的正则化方法。这个过程可以避免通常的zeta函数正则化过程中的许多异常。它也被证明是最充分的非线性西格玛超导模型的描述。在与A. Abanov我们建议使用这种正则化来得到第一个数学上严格计算的Berry相位在这些models.We提出了一个新的几何不变量的紧致流形,它结合了两个经典的不变量-Ray-Singer挠和Atiyah-Patodi-Singer eta-不变量。我们的建设允许同时研究这两个不变量,并导致发现他们的新属性。复流形的一个类似的不变量在复几何和数论中有了新的应用。新不变量的定义是基于对非自伴微分算子行列式的研究。我们提出了一种新的建设,这样的决定因素,在某些情况下,表现得比通常的,这是更充分的描述某些模型的超导性。使用这种结构,我们建议这些模型的第一个严格的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maxim Braverman其他文献

Witten deformation of analytic torsion and the spectral sequence of a filtration
  • DOI:
    10.1007/bf02246766
  • 发表时间:
    1996-01-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Maxim Braverman
  • 通讯作者:
    Maxim Braverman
A novel, wave-shaped profile of germline selection of pathogenic mtDNA mutations is discovered by bypassing a classical statistical bias
通过绕过经典的统计偏差,发现了致病性 mtDNA 突变种系选择的新型波形图谱
  • DOI:
    10.1101/2023.11.21.568140
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Auden Cote;Z. Fleischmann;M. Franco;Zhibin Chen;Mark Khrapko;Benjamin Vyshedskiy;Maxim Braverman;K. Popadin;Sarah Pickett;D. Woods;Jonathan L. Tilly;Douglas Turnbull;Konstantin Khrapko
  • 通讯作者:
    Konstantin Khrapko
New Proof of the Cheeger–Müller Theorem
On the $$\mathbb {Z}_2$$ -valued index of elliptic odd symmetric operators on non-compact manifolds
  • DOI:
    10.1007/s40316-024-00228-5
  • 发表时间:
    2024-12-26
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Maxim Braverman;Ahmad Reza Haj Saeedi Sadegh
  • 通讯作者:
    Ahmad Reza Haj Saeedi Sadegh

Maxim Braverman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maxim Braverman', 18)}}的其他基金

Determinants of non-self-adjoint elliptic operators in geometry and physics
几何和物理中非自伴椭圆算子的行列式
  • 批准号:
    1005888
  • 财政年份:
    2010
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Conference "Spectral Theory and Geometric Analysis"
会议“谱理论与几何分析”
  • 批准号:
    0901179
  • 财政年份:
    2009
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Spectral Invarinats of Deformed Dirac Operators on Open G-Manifolds
开G流形上变形狄拉克算子的谱不变量
  • 批准号:
    0204421
  • 财政年份:
    2002
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant

相似海外基金

From elliptic operators to sub-elliptic operators
从椭圆算子到次椭圆算子
  • 批准号:
    20K03662
  • 财政年份:
    2020
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Higher Invariants of Elliptic Operators and Applications
椭圆算子的更高不变量及其应用
  • 批准号:
    2000082
  • 财政年份:
    2020
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Research on the eigenvalues and the eigenfuctions of elliptic partial differential operators with applications to nonliear problems
椭圆偏微分算子的特征值和特征函数及其在非线性问题中的应用研究
  • 批准号:
    19K03588
  • 财政年份:
    2019
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on the thoery of elliptic operators with unbounded coefficients and applications
无界系数椭圆算子理论及应用研究
  • 批准号:
    18K13445
  • 财政年份:
    2018
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Numerical Spectral Study of Elliptic Operators
椭圆算子的数值谱研究
  • 批准号:
    1818948
  • 财政年份:
    2018
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
K-theory of Operator Algebras and Invariants of Elliptic Operators
算子代数的K理论和椭圆算子不变量
  • 批准号:
    1800737
  • 财政年份:
    2018
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
Shape optimization for eigenvalues of higher order elliptic operators
高阶椭圆算子特征值的形状优化
  • 批准号:
    396521072
  • 财政年份:
    2017
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Research Grants
Analysis of elliptic operators and its applications to Geometric Function Theory
椭圆算子分析及其在几何函数论中的应用
  • 批准号:
    17H02847
  • 财政年份:
    2017
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of second order elliptic operators with unbounded coefficients
无界系数二阶椭圆算子的研究
  • 批准号:
    16K17619
  • 财政年份:
    2016
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
K-theory of operator algebras and invariants of elliptic operators
算子代数的 K 理论和椭圆算子不变量
  • 批准号:
    1500823
  • 财政年份:
    2015
  • 资助金额:
    $ 11.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了