Regularity properties and singularity structure of solutions to linear and non-linear variational problems

线性和非线性变分问题解的正则性和奇点结构

基本信息

  • 批准号:
    0707005
  • 负责人:
  • 金额:
    $ 10.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

The main goal of the proposed project is to understand the nature of the branch point singularities of stable minimal hypersurfaces. The work proposed in this direction is aimed on the one hand at developing a local regularity theory for stable branched minimal hypersurfaces, generalizing the proposer's recent work in the case of multiplicity 2, and on the other hand at estimating the size and obtaining information concerning the structure of the set of their branch point singularities, focusing on multiplicity 2 case first. As a step in the regularity theory, and also as an interesting variational problem in its own right, it is also proposed to develop an independent theory for the corresponding "linear" variational problem; i.e. to study the regularity properties and the branching behavior of co-dimension 1 multiple valued critical points of the Dirichlet's integral.The research proposed here is directed towards reaching in two specific previously unexplored contexts a goal that is common to a broader class of problems; namely, understanding the critical points of functionals occurring in various mathematical and physical problems. One often faces the problem of finding an extremum of a mathematical or physical quantity such as volume or some energy. In order to find an extremum, one has to work in a sufficiently large space of competitors which often need to be allowed to carry certain undesirable properties (singularities), with the expectation that a critical point will have nicer behavior than a typical competitor in the class. It is indeed often the case that a critical point found this way has more regularity, but it is also typical that it carries some small set of essential singularities. In order to fully understand the nature of the critical point, it is therefore necessary to study its singularities as well as its behavior near the singularities.
该项目的主要目标是了解稳定最小超曲面的分支点奇点的性质。在这个方向上提出的工作一方面旨在发展稳定分支最小超曲面的局部正则理论,概括提议者最近在重数 2 的情况下的工作,另一方面估计其分支点奇点集的大小并获得有关其结构的信息,首先关注重数 2 的情况。作为正则理论的一个步骤,也作为其本身有趣的变分问题,还建议为相应的“线性”变分问题发展一个独立的理论;即研究狄利克雷积分的同维 1 多值临界点的正则性性质和分支行为。这里提出的研究旨在在两个特定的先前未探索的背景下实现更广泛的问题类所共有的目标;即理解各种数学和物理问题中泛函的临界点。人们经常面临寻找数学或物理量(例如体积或某种能量)的极值的问题。为了找到极值,必须在足够大的竞争者空间中工作,这些竞争者通常需要被允许携带某些不良特性(奇点),并期望临界点将具有比同类中典型竞争者更好的行为。确实,通常情况下,通过这种方式找到的临界点具有更多的规律性,但它也通常带有一些本质奇点。为了充分理解临界点的本质,有必要研究其奇点以及奇点附近的行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neshan Wickramasekera其他文献

Motion of a vortex filament with axial flow in the half space
涡丝在半空间内的轴流运动
A general regularity theory for stable codimension 1 integral varifolds
  • DOI:
    10.4007/annals.2014.179.3.2
  • 发表时间:
    2009-11
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Neshan Wickramasekera
  • 通讯作者:
    Neshan Wickramasekera
A Structure Theory for Stable Codimension 1 Integral Varifolds with Applications to Area Minimising Hypersurfaces mod p
稳定余维1积分变体的结构理论及其在面积最小化超曲面mod p中的应用
  • DOI:
    10.1090/jams/1032
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Paul Minter;Neshan Wickramasekera
  • 通讯作者:
    Neshan Wickramasekera
A regularity and compactness theory for immersed stable minimal hypersurfaces of multiplicity at most 2
  • DOI:
    10.4310/jdg/1217361067
  • 发表时间:
    2007-10
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Neshan Wickramasekera
  • 通讯作者:
    Neshan Wickramasekera
A sharp strong maximum principle and a sharp unique continuation theorem for singular minimal hypersurfaces

Neshan Wickramasekera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neshan Wickramasekera', 18)}}的其他基金

Singularities of solutions to geometric variational problems
几何变分问题解的奇异性
  • 批准号:
    0601265
  • 财政年份:
    2005
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Standard Grant
Singularities of solutions to geometric variational problems
几何变分问题解的奇异性
  • 批准号:
    0406447
  • 财政年份:
    2004
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Standard Grant

相似国自然基金

镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
  • 批准号:
    20977008
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
  • 批准号:
    50702003
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Continuing Grant
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Training Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 10.32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了