Microlocalization and Mirror Symmetry
微定位和镜像对称
基本信息
- 批准号:0707064
- 负责人:
- 金额:$ 14.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to expand our understanding of mirror symmetry and illustrate how it incorporates new dualities in mathematics. In particular, the homological mirror symmetry conjecture of Kontsevich expresses this physical phenomenon as an equivalence of brane categories. One such category is the Fukaya category, constructed from Lagrangian submanifolds. A central focus of this project will be the relationship, found recently by the Principal Investigator with D. Nadler, between the Fukaya category of the cotangent bundle of a manifold and constructible sheaves on the base. This construction will be used: 1) to study mirror symmetry for the cotangent bundle; 2) to characterize perverse sheaves in terms of their corresponding Fukaya objects; and 3) to construct Hecke eigensheaves in the geometric Langlands program, following the proposal of Kapustin-Witten to look at torus fibers of the Hitchin fibration. Another aspect of the proposal focusses on constructing the mirror map of moduli purely from techniques of homological mirror symmetry, thereby bridging Kontsevich's point of view with the historical approach to mirror symmetry.Over the past few decades, mathematics and theoretical physics have become linked in a profound way. The field of string theory best illustrates this interdependence. Within string theory, mirror symmetry is the prime example of how one phenomenon in physics can link seemingly disparate fields of mathematics. This proposal will broaden the mathematical scope of mirror symmetry through lines of research that both create, and capitalize on, recent advances. In particular, connections between topology, representation theory, and the geometric Langlands program have emerged, as have new methods for constructing examples of mirror symmetry from homological algebra. This research could thus lead to progress in several longstanding goals: understanding mirror symmetry in its most general setting, and constructing eigensheaves for Hecke operations in the geometric Langlands program.
这个项目的目标是扩大我们对镜像对称的理解,并说明它如何在数学中融入新的二元性。特别是,康采维奇的同调镜像对称猜想将这一物理现象表述为膜范畴的等价性。Fukaya范畴就是这样一个范畴,它由拉格朗日子流形构造而成。该项目的一个中心焦点将是首席调查员最近与D.Nadler发现的流形的余切丛的Fukaya类别与基座上的可构造滑轮之间的关系。这一结构将被用于:1)研究余切丛的镜像对称性;2)根据对应的Fukaya物体来刻画弯曲的鞘;以及3)按照Kapustin-Witten的建议,在几何朗兰兹计划中构造Hecke本征鞘,以观察Hitchin纤维的环面纤维。该提议的另一个方面是纯粹从同调镜像对称的技术来构造模的镜像映射,从而将康采维奇的观点与镜像对称的历史方法联系起来。在过去的几十年里,数学和理论物理已经以一种深刻的方式联系在一起。弦理论领域最好地说明了这种相互依存关系。在弦理论中,镜像对称性是一个物理现象如何将看似完全不同的数学领域联系在一起的最好例子。这一提议将通过既创造并利用最新进展的研究路线来扩大镜像对称的数学范围。特别是,拓扑学、表示理论和几何朗兰兹程序之间的联系已经出现,并且有了从同调代数构造镜像对称例子的新方法。因此,这项研究可能会在几个长期目标上取得进展:在最一般的背景下理解镜像对称性,以及在几何朗兰兹计划中为Hecke运算构建本征层。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Zaslow其他文献
Eric Zaslow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Zaslow', 18)}}的其他基金
Moduli Spaces and Applications of Constructible Sheaves
可构造滑轮的模空间和应用
- 批准号:
2104087 - 财政年份:2021
- 资助金额:
$ 14.85万 - 项目类别:
Continuing Grant
Causeway Postbaccalaureate Program
铜锣湾学士学位后课程
- 批准号:
1916410 - 财政年份:2019
- 资助金额:
$ 14.85万 - 项目类别:
Continuing Grant
A Sheaf-Theoretic Approach to M5-Brane Geometry
M5 膜几何的层理论方法
- 批准号:
1708503 - 财政年份:2017
- 资助金额:
$ 14.85万 - 项目类别:
Continuing Grant
Representation Theory, Integrable Systems and Quantum Fields: Emphasis Year at Northwestern University, May 19-23, 2014
表示论、可积系统和量子场:西北大学重点年,2014 年 5 月 19 日至 23 日
- 批准号:
1342112 - 财政年份:2014
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Homological Mirror Symmetry for Calabi-Yau Hypersurfaces
Calabi-Yau 超曲面的同调镜像对称
- 批准号:
1104779 - 财政年份:2011
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
相似海外基金
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
- 批准号:
EP/Y033574/1 - 财政年份:2024
- 资助金额:
$ 14.85万 - 项目类别:
Research Grant
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
- 批准号:
2316538 - 财政年份:2023
- 资助金额:
$ 14.85万 - 项目类别:
Fellowship Award
A Non-Archimedean Approach to Mirror Symmetry
镜像对称的非阿基米德方法
- 批准号:
2302095 - 财政年份:2023
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
- 批准号:
EP/X032779/1 - 财政年份:2023
- 资助金额:
$ 14.85万 - 项目类别:
Fellowship
Brauer group and homological mirror symmetry
布劳尔群和同调镜像对称
- 批准号:
23KJ0341 - 财政年份:2023
- 资助金额:
$ 14.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mirror symmetry and quiver flag varieties
镜像对称和箭袋旗品种
- 批准号:
DGECR-2022-00436 - 财政年份:2022
- 资助金额:
$ 14.85万 - 项目类别:
Discovery Launch Supplement
Windows and Mirror Symmetry
窗口和镜像对称
- 批准号:
RGPIN-2022-03400 - 财政年份:2022
- 资助金额:
$ 14.85万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2022
- 资助金额:
$ 14.85万 - 项目类别:
Discovery Grants Program - Individual
Topics in mirror symmetry and symplectic topology
镜像对称和辛拓扑主题
- 批准号:
2746276 - 财政年份:2022
- 资助金额:
$ 14.85万 - 项目类别:
Studentship