A Sheaf-Theoretic Approach to M5-Brane Geometry
M5 膜几何的层理论方法
基本信息
- 批准号:1708503
- 负责人:
- 金额:$ 24.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to establish and strengthen rich connections between mathematics and theoretical physics which will serve to advance both fields. In physics, M-theory is an approach to unifying the different string theories, which themselves provide a theoretical framework for unifying the forces of nature: gravity and particle theory. The PI's recent mathematical advances will provide rigorous calculations and predictions of quantities of physical interest. In addition, the PI will continue to supervise young mathematicians, run seminars and disseminate and speak widely about the research. Beyond this, the PI will serve the broader community by continuing to run a math circle and by continuing to play an central role in the summer Bridge program of Northwestern University.PI Zaslow, in a number of works, spearheaded the use of sheaf theory in symplectic geometry and mirror symmetry. His recent work on invariants of Legendrian knots and Lagrangian surfaces found new connections to cluster theory. In the present work, Zaslow will extend these linkages to the dimension of great interest to the physics of M5-branes in string theory: three-dimensional Lagrangians and two-dimensional Legendrian surfaces. New and interesting phenomena occur at this critical dimension. Zaslow will do the following: 1. find superpotentials encoding counts of holomorphic disks bounding Lagrangian fillings of Legendrian surfaces and establish Ooguri-Vafa integrality in all framings;2. explain how such counts are determined by (Seiberg-like) mutations from cluster theory (at each genus, Donaldson-Thomas transformations relate them to simple building blocks);3. establish "framing duality" (i.e., prove that the genus-g moduli space computes, via different framings, DT invariants of all symmetric quivers with g nodes);4. extend these results in complex three-space to the nonexact setting of the resolved conifold by incorporating Q-deformations into the sheaf theory via twisted sheaves;5. apply this machinery to knot conormals to explain large-N duality using sheaf theory;6. prove the Lagrangians found by Zaslow-Treumann have special-Lagrangian embeddings;7. explain the Goncharov-Kenyon-Beauville integrable system via mirror symmetry.
该项目旨在建立和加强数学和理论物理之间的丰富联系,这将有助于推进这两个领域。 在物理学中,M理论是一种统一不同弦理论的方法,这些弦理论本身为统一自然力提供了一个理论框架:引力和粒子理论。 PI最近的数学进步将提供严格的计算和预测物理量的兴趣。 此外,PI将继续监督年轻的数学家,举办研讨会,传播和广泛谈论研究。 除此之外,PI将服务于更广泛的社区,继续运行一个数学圈,并继续发挥核心作用的夏桥计划的西北大学。PI Zaslow,在一些工程,率先使用层理论辛几何和镜像对称。他最近的工作不变量的勒让德结和拉格朗日曲面发现新的连接到集群理论。 在目前的工作中,Zaslow将这些联系扩展到弦理论中对M5-膜物理学非常感兴趣的维度:三维拉格朗日和二维勒让德曲面。在这个关键维度上出现了新的有趣的现象。Zaslow将执行以下操作:1.找到编码勒让德曲面的拉格朗日填充边界的全纯盘的计数的超势,并在所有框架中建立Ooguri-Vafa积分;2.解释这些计数是如何由来自簇理论的(Seiberg样)突变确定的(在每个属中,Donaldson-Thomas变换将它们与简单的构建块相关联);3.建立“框架二元性”(即,证明亏格-g模空间通过不同的框架计算具有g个节点的所有对称箭图的DT不变量);4.通过扭曲层将Q-变形引入层理论,将这些结果在复三维空间中推广到解析锥的非精确设置;5.应用这一机制结conormal解释大N对偶使用层理论;6.证明Zaslow-Treumann发现的拉格朗日函数具有特殊的拉格朗日嵌入;7.用镜像对称解释Goncharov-Kenyon-Beauville可积系统。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cubic Planar Graphs and Legendrian Surface Theory
三次平面图和勒让德曲面理论
- DOI:10.4310/atmp.2018.v22.n5.a5
- 发表时间:2018
- 期刊:
- 影响因子:1.5
- 作者:Treumann, David;Zaslow, Eric
- 通讯作者:Zaslow, Eric
Cluster varieties from Legendrian knots
- DOI:10.1215/00127094-2019-0027
- 发表时间:2015-12
- 期刊:
- 影响因子:2.5
- 作者:V. Shende;David Treumann;H. Williams;E. Zaslow
- 通讯作者:V. Shende;David Treumann;H. Williams;E. Zaslow
Kasteleyn operators from mirror symmetry
镜像对称的 Kasteleyn 算子
- DOI:10.1007/s00029-019-0506-7
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Treumann, David;Williams, Harold;Zaslow, Eric
- 通讯作者:Zaslow, Eric
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Zaslow其他文献
Eric Zaslow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Zaslow', 18)}}的其他基金
Moduli Spaces and Applications of Constructible Sheaves
可构造滑轮的模空间和应用
- 批准号:
2104087 - 财政年份:2021
- 资助金额:
$ 24.76万 - 项目类别:
Continuing Grant
Causeway Postbaccalaureate Program
铜锣湾学士学位后课程
- 批准号:
1916410 - 财政年份:2019
- 资助金额:
$ 24.76万 - 项目类别:
Continuing Grant
Representation Theory, Integrable Systems and Quantum Fields: Emphasis Year at Northwestern University, May 19-23, 2014
表示论、可积系统和量子场:西北大学重点年,2014 年 5 月 19 日至 23 日
- 批准号:
1342112 - 财政年份:2014
- 资助金额:
$ 24.76万 - 项目类别:
Standard Grant
Homological Mirror Symmetry for Calabi-Yau Hypersurfaces
Calabi-Yau 超曲面的同调镜像对称
- 批准号:
1104779 - 财政年份:2011
- 资助金额:
$ 24.76万 - 项目类别:
Standard Grant
相似海外基金
Information Theoretic Approach to Explore Malware Payload and Command and Control
探索恶意软件有效负载和命令与控制的信息论方法
- 批准号:
2887741 - 财政年份:2023
- 资助金额:
$ 24.76万 - 项目类别:
Studentship
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
$ 24.76万 - 项目类别:
The Right to Inclusion in the Community: A Recognition-Theoretic Approach
融入社区的权利:一种认可理论方法
- 批准号:
2892751 - 财政年份:2023
- 资助金额:
$ 24.76万 - 项目类别:
Studentship
Potential theoretic approach to quasi-stationary phenomena of Markov processes
马尔可夫过程准平稳现象的潜在理论方法
- 批准号:
23KJ0236 - 财政年份:2023
- 资助金额:
$ 24.76万 - 项目类别:
Grant-in-Aid for JSPS Fellows
An Information Theoretic Approach to Short-Term Stability Assessment for Smart Grids
智能电网短期稳定性评估的信息论方法
- 批准号:
2884400 - 财政年份:2023
- 资助金额:
$ 24.76万 - 项目类别:
Studentship
A Pragmatist and Category-Theoretic Approach to the Grue Paradox
格鲁悖论的实用主义和范畴论方法
- 批准号:
22KJ1934 - 财政年份:2023
- 资助金额:
$ 24.76万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Operator-theoretic approach to problems of Analysis and Partial Differential Equations
分析和偏微分方程问题的算子理论方法
- 批准号:
RGPIN-2017-05567 - 财政年份:2022
- 资助金额:
$ 24.76万 - 项目类别:
Discovery Grants Program - Individual
A reference file theoretic approach to the interpretive diversity and formal unity of existential and copular sentences
存在句和共行句的解释多样性和形式统一的参考文件理论方法
- 批准号:
22K00553 - 财政年份:2022
- 资助金额:
$ 24.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Operator-theoretic approach to problems of Analysis and Partial Differential Equations
分析和偏微分方程问题的算子理论方法
- 批准号:
RGPIN-2017-05567 - 财政年份:2021
- 资助金额:
$ 24.76万 - 项目类别:
Discovery Grants Program - Individual
A control-theoretic approach to distributed optimization
分布式优化的控制理论方法
- 批准号:
2139482 - 财政年份:2021
- 资助金额:
$ 24.76万 - 项目类别:
Standard Grant