Moduli Spaces and Applications of Constructible Sheaves
可构造滑轮的模空间和应用
基本信息
- 批准号:2104087
- 负责人:
- 金额:$ 41.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This work lies at the interface of mathematics and theoretical physics, and the findings will be relevant to both communities. More specifically, the project will establish and elucidate connections between the mathematical subjects of sheaves, cluster varieties, and combinatorics, and advance physical mathematics by finding wave functions for a class of objects in string theory. The broader impacts of this project lie in the professional development of the PI's graduate students and postdocs, the dissemination of research through talks and the Northwestern Geometry/Physics seminar, and through the PI's many outreach activities.A common thread within the project is an understanding of a moduli space of objects in a category defined by a Legendrian subspace. In collaborative work with Linhui Shen, the PI will use cluster theory to determine generating functions for all-genus open Gromov-Witten invariants of certain Lagrangian three-folds filling Legendrian surfaces, given the data of a framing. These generating functions are interpreted as wave functions for branes wrapping the Lagrangians. They can be reinterpreted as Cohomological Hall invariants for a symmetric quiver determined by the framing, a phenomenon called "framing duality." A second research direction is to count the number of nodal curves of genus-g in a g-dimensional family inside a toric surface. The idea is to create a Beauville-type integrable system (curves and their Jacobians) and to use, in this novel setting, the reasoning employed by the PI and Yau to count curves on K3 surfaces, namely: find the Euler characteristic of the total space. Another viewpoint is to compute with tropical geometry. This project is joint with Helge Ruddat. Finally, using the graphical methods developed by the PI with Casals, in joint work with Ian Le, the PI plans to reframe the Deodhar decomposition diagrammatically. The techniques apply to other kinds of decompositions as well, beyond double Bruhat cells. The PI will also study the closely related topic of the skeleta of Richardson varieties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项工作位于数学和理论物理的界面,研究结果将与两个社区有关。 更具体地说,该项目将建立和阐明层,簇品种和组合学的数学科目之间的联系,并通过寻找弦理论中一类对象的波函数来推进物理数学。 该项目的更广泛的影响在于PI的研究生和博士后的专业发展,通过讲座和西北几何/物理研讨会传播研究成果,并通过PI的许多外展活动。该项目中的一个共同点是理解由Legendrian子空间定义的一类对象的模空间。 在与Linhui Shen的合作中,PI将使用集群理论来确定某些拉格朗日三重填充Legendrian曲面的所有亏格开放Gromov-Witten不变量的生成函数,给定框架的数据。 这些生成函数被解释为包裹拉格朗日量的膜的波函数。 它们可以被重新解释为由框架决定的对称矩阵的上同调Hall不变量,这种现象称为“框架对偶性”。“第二个研究方向是计算复曲面内g维族中亏格g的节点曲线的数量。 我们的想法是创建一个Beauville型可积系统(曲线和它们的雅可比行列式),并在这个新的设置中使用PI和Yau所采用的推理来计算K3曲面上的曲线,即:找到总空间的欧拉特征。 另一种观点是用热带几何进行计算。 该项目是与Helge Ruddat联合进行的。 最后,使用PI与Casals开发的图形方法,在与Ian Le的联合工作中,PI计划以图解方式重新构建Deodhar分解。 这些技术也适用于其他类型的分解,超越了双布鲁哈特细胞。 PI还将研究与Richardson品种相关的Aprieta主题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Legendrian weaves : N–graph calculus, flagmoduli and applications
Legendrian 编织:N 图演算、flagmoduli 和应用
- DOI:10.2140/gt.2022.26.3589
- 发表时间:2022
- 期刊:
- 影响因子:2
- 作者:Casals, Roger;Zaslow, Eric
- 通讯作者:Zaslow, Eric
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Zaslow其他文献
Eric Zaslow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Zaslow', 18)}}的其他基金
Causeway Postbaccalaureate Program
铜锣湾学士学位后课程
- 批准号:
1916410 - 财政年份:2019
- 资助金额:
$ 41.39万 - 项目类别:
Continuing Grant
A Sheaf-Theoretic Approach to M5-Brane Geometry
M5 膜几何的层理论方法
- 批准号:
1708503 - 财政年份:2017
- 资助金额:
$ 41.39万 - 项目类别:
Continuing Grant
Representation Theory, Integrable Systems and Quantum Fields: Emphasis Year at Northwestern University, May 19-23, 2014
表示论、可积系统和量子场:西北大学重点年,2014 年 5 月 19 日至 23 日
- 批准号:
1342112 - 财政年份:2014
- 资助金额:
$ 41.39万 - 项目类别:
Standard Grant
Homological Mirror Symmetry for Calabi-Yau Hypersurfaces
Calabi-Yau 超曲面的同调镜像对称
- 批准号:
1104779 - 财政年份:2011
- 资助金额:
$ 41.39万 - 项目类别:
Standard Grant
相似海外基金
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 41.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dual complexes and weight filtrations: Applications to cohomology of moduli spaces and invariants of singularities
对偶复形和权重过滤:模空间上同调和奇点不变量的应用
- 批准号:
2302475 - 财政年份:2023
- 资助金额:
$ 41.39万 - 项目类别:
Continuing Grant
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:
RGPIN-2018-04544 - 财政年份:2022
- 资助金额:
$ 41.39万 - 项目类别:
Discovery Grants Program - Individual
Geometry of Moduli spaces of Connections and Higgs fields and their Applications
联结模空间和希格斯场的几何及其应用
- 批准号:
22K18669 - 财政年份:2022
- 资助金额:
$ 41.39万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Bridgeland Stability, Moduli Spaces, and Applications
Bridgeland 稳定性、模空间和应用
- 批准号:
2200684 - 财政年份:2022
- 资助金额:
$ 41.39万 - 项目类别:
Standard Grant
Moduli Spaces of Polygons with Applications to Protein-Macrocycle Docking
多边形模空间及其在蛋白质大环对接中的应用
- 批准号:
2054251 - 财政年份:2021
- 资助金额:
$ 41.39万 - 项目类别:
Continuing Grant
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:
RGPIN-2018-04544 - 财政年份:2021
- 资助金额:
$ 41.39万 - 项目类别:
Discovery Grants Program - Individual
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:
RGPIN-2018-04544 - 财政年份:2020
- 资助金额:
$ 41.39万 - 项目类别:
Discovery Grants Program - Individual
Logarithmic Moduli Spaces for Symplectic Geometry: Construction, Applications, and Beyond
辛几何的对数模空间:构造、应用及其他
- 批准号:
2003340 - 财政年份:2020
- 资助金额:
$ 41.39万 - 项目类别:
Standard Grant
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:
RGPIN-2018-04544 - 财政年份:2019
- 资助金额:
$ 41.39万 - 项目类别:
Discovery Grants Program - Individual