Workshop on Stacks in Geometry and Topology
几何和拓扑堆栈研讨会
基本信息
- 批准号:0711566
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-15 至 2008-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theory of stacks is the study of symmetries of geometric objects and, assuch, has wide impact throughout mathematics: it is a central theme incurrent work in algebraic geometry, algebraic topology, number theory,analytic and differential geometry, and mathematical physics. Indeed, thetheory has proved flexible enough to apply to any field of mathematics wereit is important to study symmetries across continuous families of geometricobjects, especially when the groups of self-symmetries can varynon-continuously throughout the family. This workshop, to be held at theFields Institute in Toronto, will bring together leading researchers,postdoctoral mathematicians, and graduate students from fields which applythe theory of stacks; the intent is to discuss recent advances, and toexplore and stimulate potentially important new areas of applications. Themain speakers will address current problems in chromatic stable homotopytheory, orbifolds, mathematical physics, geometry in various forms, and theemerging field of derived algebraic geometry. Researchers who have agreed toparticipate include Mark Behrens (MIT), Ian Grojnowksi (Cambridge), JacobLurie (Harvard), Gabriele Vezzosi (Firenze), and Angelo Vistolli (ScuolaNormale Superiore). In addition, Mike Hopkins (Harvard) will give a seriesof lectures concurrently with this workshop.The workshop will be the central event of a two-month subprogramentitled ``Stacks in geometry and topology'', within the thematic program``Geometric applications of homotopy theory''. The full program will runfrom January through June of 2007 at the Fields Institute. Beyond theworkshop, there a directly related mini-courses by Paul Goerss(Northwestern), Ezra Getzler (Northwestern), and Jacob Lurie (Harvard).The workshop and the mini-courses will pursue the theory of stacksacross a diverse fields of mathematics where this theory has been applied,and an important goal of this whole program is to foster cross-disciplinaryinteraction.
堆栈理论是对几何对象对称性的研究,因此在整个数学中具有广泛的影响:它是代数几何、代数拓扑、数论、解析几何和微分几何以及数学物理中当前工作的中心主题。事实上,事实证明,该理论足够灵活,可以应用于任何数学领域,因为研究连续几何对象族的对称性很重要,特别是当自对称群可以在整个族中非连续变化时。 该研讨会将在多伦多菲尔兹研究所举行,将汇集堆栈理论应用领域的顶尖研究人员、博士后数学家和研究生;目的是讨论最新进展,探索和激发潜在的重要新应用领域。主要演讲者将讨论色稳定同伦理论、轨道折叠、数学物理、各种形式的几何以及衍生代数几何的新兴领域中的当前问题。同意参与的研究人员包括 Mark Behrens(麻省理工学院)、Ian Grojnowksi(剑桥)、JacobLurie(哈佛大学)、Gabriele Vezzosi(佛罗伦萨)和 Angelo Vistolli(ScuolaNormale Superiore)。 此外,迈克·霍普金斯(哈佛大学)将在本次研讨会的同时进行一系列讲座。本次研讨会将是主题项目“同伦理论的几何应用”内为期两个月的题为“几何和拓扑中的堆栈”的子项目的中心活动。整个项目将于 2007 年 1 月至 6 月在菲尔兹研究所进行。除了研讨会之外,还有 Paul Goerss(西北大学)、Ezra Getzler(西北大学)和 Jacob Lurie(哈佛大学)开设的直接相关的迷你课程。研讨会和迷你课程将在应用该理论的不同数学领域中探讨堆栈理论,整个项目的一个重要目标是促进跨学科互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Goerss其他文献
Realizing unstable injectives
- DOI:
10.1007/bf01163658 - 发表时间:
1987-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Paul Goerss;Jean Lannes - 通讯作者:
Jean Lannes
Paul Goerss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Goerss', 18)}}的其他基金
Workshops in Spectral Methods in Algebra, Geometry, and Topology
代数、几何和拓扑谱方法研讨会
- 批准号:
2230159 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Workshops: Homotopy Harnessing Higher Structures
研讨会:利用更高结构的同伦
- 批准号:
1833295 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Conference on Derived Algebraic Geometry
派生代数几何会议
- 批准号:
1700795 - 财政年份:2017
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Midwest Topology Seminar, Spring 2014
中西部拓扑研讨会,2014 年春季
- 批准号:
1413786 - 财政年份:2014
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Local and Global Chromatic Stable Homotopy Theory
局部和全局色稳定同伦理论
- 批准号:
1308916 - 财政年份:2013
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Workshop in Equivariant, Chromatic, and Motivic Homotopy Theory
等变、半音和基元同伦理论研讨会
- 批准号:
1261225 - 财政年份:2013
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Chromatic Stable Homotopy Theory and Derived Algebraic Geometry
色稳定同伦理论及其派生代数几何
- 批准号:
1007007 - 财政年份:2010
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Workshop on Homotopy theory and Derived Algebraic Geometry
同伦理论与派生代数几何研讨会
- 批准号:
1034873 - 财政年份:2010
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
The Topology and Geometry of Topological Field Theories
拓扑场论的拓扑和几何
- 批准号:
0852513 - 财政年份:2009
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
相似海外基金
Geometry of moduli stacks of Galois representations
伽罗瓦表示的模栈的几何
- 批准号:
2302623 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Algebraic and Arithmetic Geometry via Stacks
通过堆栈学习代数和算术几何
- 批准号:
RGPIN-2022-02980 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Derived Geometry, Elliptic Cohomology, and Loop Stacks
导出几何、椭圆上同调和循环堆栈
- 批准号:
1714273 - 财政年份:2017
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
The Stacks Project in Algebraic Geometry
代数几何中的 Stacks 项目
- 批准号:
1601160 - 财政年份:2016
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Stability conditions on moduli stacks and applications to the geometry of moduli spaces (M08/Erg.)
模数堆栈的稳定性条件及其在模数空间几何中的应用 (M08/Erg.)
- 批准号:
229921292 - 财政年份:2012
- 资助金额:
$ 1.5万 - 项目类别:
CRC/Transregios
CAREER: Stacks, moduli spaces, and log geometry
职业:堆栈、模空间和对数几何
- 批准号:
0748718 - 财政年份:2008
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Stacks and differential graded schemes in algebraic geometry
代数几何中的堆栈和微分分级方案
- 批准号:
172668-2003 - 财政年份:2006
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Stacks and differential graded schemes in algebraic geometry
代数几何中的堆栈和微分分级方案
- 批准号:
172668-2003 - 财政年份:2005
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Conference on Groupoids and Stacks in Geometry and Physics
几何和物理中的群形和堆栈会议
- 批准号:
0406368 - 财政年份:2004
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Stacks and differential graded schemes in algebraic geometry
代数几何中的堆栈和微分分级方案
- 批准号:
172668-2003 - 财政年份:2004
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




