Local and Global Chromatic Stable Homotopy Theory

局部和全局色稳定同伦理论

基本信息

  • 批准号:
    1308916
  • 负责人:
  • 金额:
    $ 29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS 1308916, Principal Investigator: Paul G. GoerssThe chromatic picture of stable homotopy uses the algebraic geometry of formal groups to organize and direct investigations into the deeper structures of the field. The program supported by this grant is to gather local information - the data that can been seen from formal groups of a single height - and then to assemble that data into a more global picture. It is in the second step where we can use constructions and information from derived algebraic geometry; these allow us to interpolate among heights. This proposal focuses on four projects, all growing out of this local-to-global mixture. The most computational is an investigation of the homotopy groups of the K(2)-local sphere; that is, what we can see at height 2. This long-standing project, with Hans-Werner Henn and others; we are seeing beautiful and unexpected phenomena at low primes. A second, closely related project, is to investigate the fixed point spectra of Morava E-theory for certain closed subgroups of the Morava stabilizer group. These are much simpler than the sphere itself, but capture a great deal of the important homotopy theory. The other two projects are more global in nature. One is to investigate the existence and non-existence of derived schemes (or stacks) elliptic curves with level structure; that is, structured versions of the Hopkins-Miller theory of topological modular forms. The point here is to make a systematic investigation of the equivariant structure. The other project is to look at the Chromatic Splitting Conjecture through the lens of p-divisible groups.All of these projects lie in homotopy theory, a branch of topology. The main aim of this field is to study mathematical phenomena which remain invariant under continuous transformations. Many familiar geometric phenomena - such as angles - are not invariant in this fashion; yet continuous transformations are natural and abundant. Long study has indicated that the among the most fruitful invariant phenomena are classes of maps from circles or, more generally, higher dimensional spheres, into the space to be studied. These are the homotopy groups. Historically these groups were described as a "milling crowd"; however, the recent introduction of techniques and constructions from number theory and algebraic geometry have permitted us to do detailed calculations and to uncover large scale patterns of remarkable regularity and beauty.
[摘要]获颁:DMS 1308916,首席研究员:Paul G. goerss稳定同伦的色图利用形式群的代数几何来组织和指导对该领域更深层次结构的研究。这项赠款支持的项目是收集当地信息——从单一高度的正式群体中可以看到的数据——然后将这些数据整合成更全面的图景。在第二步中,我们可以使用衍生代数几何的结构和信息;这允许我们在高度之间进行插值。本提案重点关注四个项目,它们都源于这种地方与全球的结合。最具计算性的是对K(2)局部球的同伦群的研究;这就是我们在高度2处看到的。这个长期的项目,与汉斯-维尔纳·亨恩和其他人;我们在低质数时看到了美丽而意想不到的现象。第二个,密切相关的项目,是研究Morava e -理论对Morava稳定群的某些封闭子群的不动点谱。这些比球体本身简单得多,但却包含了很多重要的同伦理论。另外两个项目在本质上更具全球性。一是研究具有水平结构的椭圆曲线的导出格式(或堆栈)的存在性和不存在性;也就是霍普金斯-米勒拓扑模形式理论的结构化版本。这里的要点是对等变结构作一个系统的研究。另一个项目是通过p可分群的透镜来观察色分裂猜想。所有这些项目都属于同伦理论,这是拓扑学的一个分支。这一领域的主要目的是研究在连续变换下保持不变的数学现象。许多熟悉的几何现象——比如角度——在这种情况下并不是不变的;然而,持续的转变是自然而丰富的。长期的研究表明,最有成果的不变现象之一是从圆,或者更一般地说,是从高维球体到待研究空间的映射。这些是同伦群。从历史上看,这些群体被描述为“碾磨人群”;然而,最近从数论和代数几何中引入的技术和结构使我们能够进行详细的计算,并发现具有显著规律性和美丽的大规模模式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Goerss其他文献

Realizing unstable injectives
  • DOI:
    10.1007/bf01163658
  • 发表时间:
    1987-06-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Paul Goerss;Jean Lannes
  • 通讯作者:
    Jean Lannes

Paul Goerss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Goerss', 18)}}的其他基金

Workshops in Spectral Methods in Algebra, Geometry, and Topology
代数、几何和拓扑谱方法研讨会
  • 批准号:
    2230159
  • 财政年份:
    2022
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Workshops: Homotopy Harnessing Higher Structures
研讨会:利用更高结构的同伦
  • 批准号:
    1833295
  • 财政年份:
    2018
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Conference on Derived Algebraic Geometry
派生代数几何会议
  • 批准号:
    1700795
  • 财政年份:
    2017
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Midwest Topology Seminar
中西部拓扑研讨会
  • 批准号:
    1747457
  • 财政年份:
    2017
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Midwest Topology Seminar, Spring 2014
中西部拓扑研讨会,2014 年春季
  • 批准号:
    1413786
  • 财政年份:
    2014
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Workshop in Equivariant, Chromatic, and Motivic Homotopy Theory
等变、半音和基元同伦理论研讨会
  • 批准号:
    1261225
  • 财政年份:
    2013
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Chromatic Stable Homotopy Theory and Derived Algebraic Geometry
色稳定同伦理论及其派生代数几何
  • 批准号:
    1007007
  • 财政年份:
    2010
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
Workshop on Homotopy theory and Derived Algebraic Geometry
同伦理论与派生代数几何研讨会
  • 批准号:
    1034873
  • 财政年份:
    2010
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
The Topology and Geometry of Topological Field Theories
拓扑场论的拓扑和几何
  • 批准号:
    0852513
  • 财政年份:
    2009
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Workshop on Stacks in Geometry and Topology
几何和拓扑堆栈研讨会
  • 批准号:
    0711566
  • 财政年份:
    2007
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant

相似国自然基金

磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
  • 批准号:
    40536030
  • 批准年份:
    2005
  • 资助金额:
    120.0 万元
  • 项目类别:
    重点项目

相似海外基金

CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
  • 批准号:
    2338139
  • 财政年份:
    2025
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
Implications of Global Economic Forces for Domestic Monetary Policy
全球经济力量对国内货币政策的影响
  • 批准号:
    DP240100970
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Discovery Projects
The global impact of high summer temperature on heatstroke mortality in the current climate scenario
当前气候情景下夏季高温对中暑死亡率的全球影响
  • 批准号:
    24K13527
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
(Un)Fair inequality in the labor market: A global study
(Un)劳动力市场的公平不平等:一项全球研究
  • 批准号:
    MR/X033333/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Fellowship
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
  • 批准号:
    MR/Y020200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Fellowship
Synergistic global change impacts on belowground biodiversity and carbon stocks in mountain ecosystems
全球变化对山区生态系统地下生物多样性和碳储量的协同影响
  • 批准号:
    NE/X017605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Fellowship
Winds of Change: Exploring the Meteorological Drivers of Global Dust
变革之风:探索全球沙尘的气象驱动因素
  • 批准号:
    2333139
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site Mystic Aquarium: Plankton to Whales: Consequences of Global Change within Marine Ecosystems
合作研究:REU 站点神秘水族馆:浮游生物到鲸鱼:海洋生态系统内全球变化的后果
  • 批准号:
    2349354
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341858
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341859
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了