The Topology and Geometry of Topological Field Theories
拓扑场论的拓扑和几何
基本信息
- 批准号:0852513
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topological field theories arose in the 1980s through the work of mathematicians studying low dimensional topology, including Donaldson, Floer, Gromov, and others. In his effort to understand their work, Witten discovered that, in dimensions 2,3 and 4, these theories could be viewed as a special kind of supersymmetric quantum field theory. This combination of ideas has proved to be a fertile source of new mathematics in a variety of fields, including geometry, topology, and algebra. Parallel to this work, Atiyah and Segal presented an axiomatization of topological field theories which allows their study using the techniques of algebra, and in particular of homological algebra. Their has been a great deal of recent work in this direction and the purpose of this conference and its associated graduate student workshop is to survey the state of the field and to explore directions for the future.Field theories arise in physics to describe the behavior of sub-atomic particles, their interactions, and the forces that act on them.Topological field theories arise from string theory in physics and the observation that particles may not be discrete objects, but one-dimensional, if still very small, "strings". This has inspired a great deal of important mathematics; in particular in the geometry of low-dimensional objects -- a field that has been completely transformed in the past twenty-five years. The conference funded here will bring together mathematicians and mathematical physicists in this and closely related areas to gain a better understanding of where the most fertile areas of interaction presently are. The conference will be preceded by a week-long workshop intended to give new researchers to be exposed to the latest ideas and techniques in the field.
拓扑场论产生于20世纪80年代,由唐纳森、弗洛尔、格罗莫夫等数学家研究低维拓扑学而产生。在努力理解他们的工作时,威腾发现,在2维、3维和4维,这些理论可以被视为一种特殊的超对称量子场论。这种思想的结合已被证明是各种领域新数学的肥沃来源,包括几何、拓扑学和代数。与这项工作平行的是,阿提亚和西格尔提出了拓扑场论的公理化,这使得他们可以使用代数,特别是同调代数的技巧来研究。他们最近在这个方向上做了大量的工作,这次会议及其相关的研究生研讨会的目的是调查场的状态并探索未来的方向。场论产生于物理学,描述亚原子粒子的行为,它们的相互作用,以及作用在它们上面的力。拓扑场论产生于物理中的弦理论和观察到的粒子可能不是离散的物体,而是一维的,如果仍然很小的话,弦。这启发了许多重要的数学;特别是在低维物体的几何学方面--这个领域在过去25年里已经完全改变了。在这里资助的会议将把这一领域和密切相关领域的数学家和数学物理学家聚集在一起,以更好地了解目前交互作用最丰富的领域在哪里。在会议之前,将举行为期一周的研讨会,旨在让新的研究人员接触到该领域的最新想法和技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Goerss其他文献
Realizing unstable injectives
- DOI:
10.1007/bf01163658 - 发表时间:
1987-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Paul Goerss;Jean Lannes - 通讯作者:
Jean Lannes
Paul Goerss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Goerss', 18)}}的其他基金
Workshops in Spectral Methods in Algebra, Geometry, and Topology
代数、几何和拓扑谱方法研讨会
- 批准号:
2230159 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Workshops: Homotopy Harnessing Higher Structures
研讨会:利用更高结构的同伦
- 批准号:
1833295 - 财政年份:2018
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Midwest Topology Seminar, Spring 2014
中西部拓扑研讨会,2014 年春季
- 批准号:
1413786 - 财政年份:2014
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Local and Global Chromatic Stable Homotopy Theory
局部和全局色稳定同伦理论
- 批准号:
1308916 - 财政年份:2013
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Workshop in Equivariant, Chromatic, and Motivic Homotopy Theory
等变、半音和基元同伦理论研讨会
- 批准号:
1261225 - 财政年份:2013
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Chromatic Stable Homotopy Theory and Derived Algebraic Geometry
色稳定同伦理论及其派生代数几何
- 批准号:
1007007 - 财政年份:2010
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Workshop on Homotopy theory and Derived Algebraic Geometry
同伦理论与派生代数几何研讨会
- 批准号:
1034873 - 财政年份:2010
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Workshop on Stacks in Geometry and Topology
几何和拓扑堆栈研讨会
- 批准号:
0711566 - 财政年份:2007
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Fellowship Award
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Geometry and Dynamics of Topological Solitons
拓扑孤子的几何和动力学
- 批准号:
2650914 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Studentship
Study of symplectic geometry and topological data analysis with sheaf theory
辛几何研究和层理论拓扑数据分析
- 批准号:
21K13801 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of variational problems in topological geometry using Sobolev manifolds
使用 Sobolev 流形分析拓扑几何中的变分问题
- 批准号:
21K18583 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Probabilistic and Topological methods in Real Algebraic Geometry and Computational Complexity
实代数几何和计算复杂性中的概率和拓扑方法
- 批准号:
EP/V003542/1 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Fellowship
Enumerative Geometry of Hitchin Systems and Topological Quantum Field Theory
希钦系统的枚举几何与拓扑量子场论
- 批准号:
2041740 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Algebra and geometry of Banach algebras and function spaces-topological approach
Banach代数和函数空间的代数和几何-拓扑方法
- 批准号:
20K03577 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coarse Geometry: a novel approach to the Callias index & topological matter
粗几何:一种新的 Callias 索引方法
- 批准号:
DP200100729 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Discovery Projects














{{item.name}}会员




