Collaborative: Discriminative Knowledge-Rich Language Modeling for Machine Translation

协作:用于机器翻译的判别性知识丰富的语言建模

基本信息

  • 批准号:
    0712810
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

This project investigates a novel approach for assessing the fluency andgrammaticality of alternative translation hypotheses that are created withinsearch-based Machine Translation (MT) systems. This task, commonly termed"Language Modeling" (LM), has been explored primarily in the context of speechrecognition; however, current state-of-the-art language models (LMs) are noteffective at distinguishing between more fluent grammatical translations andtheir poor alternatives. In contrast, the proposed approach, "DiscriminativeKnowledge-Rich Language Modeling" (DKRLM), is explicitly designed to find themost fluent and grammatical translations within the search space by comparingthe linguistic features of the translation hypotheses against very large"clean" monolingual corpora. The intuition is that more grammaticaltranslation hypotheses should contain higher proportions of features seen inthe large corpora. An important contribution of the project is in exploringdifferent types of linguistic features to identify those that are mostinformative for the comparisons. Moreover, discriminative training isperformed to incorporate the features into a system-independent scoringfunction, replacing traditional LMs in MT systems. The broader impacts of theproposed work include both broader adoption for the methodology as well aswider use of the new DKRLM functions to other search-based NLP applicationsthat aim at generating fluent grammatical text. This includes search-basedapproaches to Speech Recognition, Natural Language Generation (NLG), OpticalCharacter Recognition (OCR), Summarization, and others.
本项目研究了一种评估基于搜索的机器翻译(MT)系统中创建的替代翻译假设的流畅性和语法性的新方法。这项任务通常被称为“语言建模”(LM),主要在语音识别的背景下进行了探索;然而,目前最先进的语言模型(LMs)在区分语法更流畅的翻译和语法差的翻译方面效果不佳。相比之下,提出的方法“判别知识丰富的语言建模”(DKRLM)明确设计为通过比较翻译假设的语言特征与非常大的“干净”单语语料库,在搜索空间中找到最流畅和最符合语法的翻译。直觉是,更多的语法翻译假设应该包含在大型语料库中看到的更高比例的特征。该项目的一个重要贡献是探索不同类型的语言特征,以确定那些最适合比较的信息。此外,进行判别训练以将特征合并到系统独立的评分函数中,取代机器翻译系统中的传统LMs。所提议的工作的更广泛的影响包括更广泛地采用该方法,以及更广泛地将新的DKRLM功能用于其他旨在生成流利语法文本的基于搜索的NLP应用程序。这包括基于搜索的语音识别方法,自然语言生成(NLG),光学字符识别(OCR),摘要等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Hwa其他文献

Topological considerations in the generation of scroll waves in excitable and cyclical media
在可兴奋和循环介质中产生滚动波的拓扑考虑
  • DOI:
    10.1016/0167-2789(94)90300-x
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Otani;Rebecca Hwa
  • 通讯作者:
    Rebecca Hwa

Rebecca Hwa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca Hwa', 18)}}的其他基金

IPA Action
IPA 行动
  • 批准号:
    1935188
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Intergovernmental Personnel Award
EAGER: Computational Models of Essay Rewritings
EAGER:论文重写的计算模型
  • 批准号:
    1550635
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Robust Parsing for New Domains and Languages
职业:新领域和语言的稳健解析
  • 批准号:
    0745914
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Student Research Workshop in Computational Linguistics, at the COLING-ACL 2006 Conference
计算语言学学生研究研讨会,COLING-ACL 2006 会议
  • 批准号:
    0612690
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SGER: Learning Syntax-based Evaluation Metrics for Machine Translation
SGER:学习基于语法的机器翻译评估指标
  • 批准号:
    0612791
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Development of Discriminative Pattern Mining Techniques as a Foundation of Human-Centric Machine Learning
判别模式挖掘技术的发展作为以人为中心的机器学习的基础
  • 批准号:
    20K11941
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Performance improvement of discriminative distributed Brillouin fiber sensing of temperature/strain
判别式分布式布里渊光纤温度/应变传感性能改进
  • 批准号:
    19K14999
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of discriminative method for distinguishing between bleeding and thrombotic tendency in cases with prolonged aPTT
开发区分 aPTT 延长病例出血和血栓倾向的判别方法
  • 批准号:
    19K16962
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Large-Scale Discriminative Modelling for Data-Intensive Speech and Language Processing
数据密集型语音和语言处理的大规模判别建模
  • 批准号:
    261540-2013
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
RI: Small: Using Automatically Generated Paraphrases and Discriminative ASR Training to Author Robust Question-Answering Dialogue Systems
RI:小型:使用自动生成的释义和判别性 ASR 训练来编写强大的问答对话系统
  • 批准号:
    1618336
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of effective curative for chronic pain based on the separation of sensory-discriminative and affective-motivational components of pain recognition in animal and human.
基于动物和人类疼痛识别的感觉辨别和情感激励成分的分离,开发慢性疼痛的有效治疗方法。
  • 批准号:
    16H05460
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了