EAGER: Computational Models of Essay Rewritings
EAGER:论文重写的计算模型
基本信息
- 批准号:1550635
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural language processing (NLP) is an integral part of an intelligent tutoring system for writing; it allows the system to automatically analyze student writings and provide feedback to help students to learn. For example, methods have been developed to automatically detect and correct grammar usage errors and to assess aspects of student writing. However, current technology does not offer enough support for teaching students to revise their writings. Unlike mechanical error corrections, the rationales behind revisions are harder to determine. There may be multiple possible changes for an unclear passage in a draft; conversely, one specific writing change might be due to several possible underlying reasons. This EAGER award investigates whether NLP methods can help students to learn to make a more concrete connection between the abstract principles of rewriting (e.g., "A paper should have a clear thesis") and the particular contexts in which the revision is carried out. The success of this project would enable educational applications that benefit the society. This project evaluates the viability of revision as a pedagogical technique by determining whether student interactions with the revision assistant enables them to learn to write better -- that is, whether certain forms of the feedback (in terms of the perceived purposes and scopes of changes) encourage students to learn to make more effective revisions. More specifically, the project works toward three objectives: (1) Define a schema for characterizing the types of changes that occur at different levels of the rewriting. For example, the writer might add one or more sentences to provide evidence to support a thesis; or the writer might add just one or two words to make a phrase more precise. (2) Based on the schema, design a computational model for recognizing the purpose and scope of each change within a revision. One application of such a model is a revision assistant that serves as a sounding board for students as they experiment with different revision alternatives. (3) Conduct experiments to study the interactions between students and the revision writing environment in which variations of idealized computational models are simulated. The findings of the experiments pave the way for developing better technologies to support for student learning.
自然语言处理(NLP)是智能写作辅导系统的重要组成部分;它允许系统自动分析学生的写作,并提供反馈,以帮助学生学习。例如,已经开发了自动检测和纠正语法使用错误以及评估学生写作方面的方法。然而,目前的技术并没有提供足够的支持来教学生修改他们的文章。与机械误差修正不同,修正背后的基本原理更难确定。草稿中不明确的段落可能有多种修改的可能;相反,一个特定的写作变化可能是由于几个潜在的原因。该奖项旨在调查NLP方法是否能帮助学生学会在重写的抽象原则(例如,“论文应该有一个清晰的主题”)和进行修改的特定环境之间建立更具体的联系。该项目的成功将使教育应用惠及社会。该项目通过确定学生与修订助理的互动是否使他们能够更好地学习写作来评估修订作为一种教学技术的可行性——也就是说,某些形式的反馈(根据感知到的目的和变化范围)是否鼓励学生学习进行更有效的修改。更具体地说,该项目朝着三个目标工作:(1)定义一个模式,用于描述在重写的不同层次上发生的更改类型。例如,作者可能会添加一个或多个句子来提供证据来支持论文;或者写作者可能会添加一两个单词使短语更精确。(2)在此模式的基础上,设计一个计算模型,用于识别一次修订中每次更改的目的和范围。这种模型的一个应用是一个复习助手,当学生尝试不同的复习方案时,它可以作为一个声音板。(3)通过实验研究学生与复习写作环境之间的相互作用,模拟理想化计算模型的变化。实验结果为开发更好的技术来支持学生学习铺平了道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Hwa其他文献
Topological considerations in the generation of scroll waves in excitable and cyclical media
在可兴奋和循环介质中产生滚动波的拓扑考虑
- DOI:
10.1016/0167-2789(94)90300-x - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
N. Otani;Rebecca Hwa - 通讯作者:
Rebecca Hwa
Rebecca Hwa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca Hwa', 18)}}的其他基金
CAREER: Robust Parsing for New Domains and Languages
职业:新领域和语言的稳健解析
- 批准号:
0745914 - 财政年份:2008
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
Collaborative: Discriminative Knowledge-Rich Language Modeling for Machine Translation
协作:用于机器翻译的判别性知识丰富的语言建模
- 批准号:
0712810 - 财政年份:2007
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
Student Research Workshop in Computational Linguistics, at the COLING-ACL 2006 Conference
计算语言学学生研究研讨会,COLING-ACL 2006 会议
- 批准号:
0612690 - 财政年份:2006
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
SGER: Learning Syntax-based Evaluation Metrics for Machine Translation
SGER:学习基于语法的机器翻译评估指标
- 批准号:
0612791 - 财政年份:2006
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational Multi-Models Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings (M2DESCO)
计算多模型支持安全设计
- 批准号:
10110861 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
EU-Funded
CRII: AF: RUI: Algorithmic Fairness for Computational Social Choice Models
CRII:AF:RUI:计算社会选择模型的算法公平性
- 批准号:
2348275 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Conference: SICB 2024: Computational and Physical Models in Research and Teaching to Explore Form-Function Relationships
会议:SICB 2024:研究和教学中的计算和物理模型探索形式-功能关系
- 批准号:
2326876 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Studentship
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
- 批准号:
10794448 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Informing 4D flow MRI haemodynamic outputs with data science, mathematical models and scale-resolving computational fluid dynamics
通过数据科学、数学模型和尺度解析计算流体动力学为 4D 流 MRI 血液动力学输出提供信息
- 批准号:
EP/X028321/1 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Fellowship
Integrating Computational and Experimental Models to Predict Toxicity of the Pancreas
整合计算和实验模型来预测胰腺的毒性
- 批准号:
10576042 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Computational fluid dynamics analysis using sophisticated plant models towards the development of digital twins in greenhouse horticulture
使用复杂的植物模型进行计算流体动力学分析,以开发温室园艺中的数字孪生
- 批准号:
23K05477 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data models for large aircraft aerodynamics using next-generation computational fluid dynamics
使用下一代计算流体动力学的大型飞机空气动力学数据模型
- 批准号:
2889801 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Studentship
Open-source Software Development Supplement for 3D quantitative analysisof mouse models of structural birth defects through computational anatomy
通过计算解剖学对结构性出生缺陷小鼠模型进行 3D 定量分析的开源软件开发补充
- 批准号:
10839199 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:














{{item.name}}会员




