RI: Inference in Large-Scale Graphical Models
RI:大规模图形模型中的推理
基本信息
- 批准号:0713162
- 负责人:
- 金额:$ 9.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractIn this project, we will develop novel methods to enable inference in large-scale graphical models, emphasizing the construction of models of unstructured environments from a vast number of sensor measurements. Creating models of the world from large amounts of noisy sensor data is an inference problem of vast proportions for which current methods do not scale up well. In keeping with the most recent literature, we model such inference problems using graphical models. However, in contrast to the literature we use factor graphs rather than belief nets, and show that there is a close and hithereto under-exploited connection between Factor Graphs and the sparse linear algebra literature. This connection enables cross- fertilization between inference in graphical models and sparse linear algebra. In particular, we will develop a novel graphical model paradigm, the BayesTree, inspired by the representations used in the so-called multifrontal factorization methods from sparse linear algebra.In terms of intellectual merits, these developments are novel and are expected to significantly advance the areas of large-scale mapping and 3D modeling in the fields of robotics and computer vision. However, we expect these new classes of algorithms to have broad impact beyond robotics in vision, in every fields where vast amounts of data needs to be processed and condensed in a parametric model. We expect the new graphical language we introduce to significantly improve understanding of exact inference in graphical models, as we feel this has been largely inaccessible but to advanced researchers in the field. By stressing the connections between the modest Gaussian elimination algorithm from linear algebra and more advanced inference methods such as the junction tree algorithm, we hope to enable a new generation of researchers that will truly understand these connections and hence be able to make revolutionary contributions in many fields.Progress reports will be regularly updated at http:// www.cc.gatech.edu/~dellaert/graphs/
AbstractIn这个项目中,我们将开发新的方法,使推理在大规模的图形模型,强调从大量的传感器测量的非结构化环境的模型的建设。从大量嘈杂的传感器数据中创建世界模型是一个大比例的推理问题,目前的方法不能很好地扩展。为了与最新的文献保持一致,我们使用图形模型来模拟这样的推理问题。然而,与文献相比,我们使用因子图而不是信念网,并表明因子图和稀疏线性代数文献之间存在密切的未充分利用的联系。这种联系使得图形模型和稀疏线性代数的推理之间能够相互促进.特别是,我们将开发一种新的图形模型范例,贝叶斯树,灵感来自于稀疏线性代数中所谓的多面分解方法中使用的表示。就智力价值而言,这些发展是新颖的,预计将显着推进机器人和计算机视觉领域的大规模映射和3D建模领域。 然而,我们预计这些新的算法类别将在视觉机器人之外产生广泛的影响,在每个需要在参数模型中处理和压缩大量数据的领域。我们希望我们引入的新图形语言能够显着提高对图形模型中精确推理的理解,因为我们认为这在很大程度上是无法访问的,但对于该领域的高级研究人员来说。通过强调线性代数中的适度高斯消去算法与更高级的推理方法(如连接树算法)之间的联系,我们希望能够使新一代的研究人员真正理解这些联系,从而能够在许多领域做出革命性的贡献。进度报告将定期更新www.cc.gatech.edu/~dellaert/graphs/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank Dellaert其他文献
How to localize humanoids with a single camera?
- DOI:
10.1007/s10514-012-9312-1 - 发表时间:
2012-09-26 - 期刊:
- 影响因子:4.300
- 作者:
Pablo F. Alcantarilla;Olivier Stasse;Sebastien Druon;Luis M. Bergasa;Frank Dellaert - 通讯作者:
Frank Dellaert
Frank Dellaert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank Dellaert', 18)}}的其他基金
RI: Small: Ultra-Sparsifiers for Fast and Scalable Mapping and 3D Reconstruction on Mobile Robots
RI:小型:用于移动机器人快速、可扩展测绘和 3D 重建的超稀疏器
- 批准号:
1115678 - 财政年份:2011
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
Fourth International Symposium on 3D Data Processing, Visualization and Transmission
第四届三维数据处理、可视化与传输国际研讨会
- 批准号:
0833955 - 财政年份:2008
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
RI: Collaborative Research: Bion-Inspired Navigation
RI:合作研究:仿生导航
- 批准号:
0713134 - 财政年份:2007
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
Unlocking the Urban Photographic Record Through 4D Scene Understanding and Modeling
通过 4D 场景理解和建模解锁城市摄影记录
- 批准号:
0534330 - 财政年份:2005
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
CAREER: Markov Chain Monte Carlo Methods for Large Scale Correspondence Problems in Computer Vision and Robotics
职业:用于计算机视觉和机器人技术中大规模对应问题的马尔可夫链蒙特卡罗方法
- 批准号:
0448111 - 财政年份:2005
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
Causal inference of oral and general health using multiple large cohorts, NDB, and hospital data
使用多个大型队列、NDB 和医院数据对口腔和一般健康状况进行因果推断
- 批准号:
23H03117 - 财政年份:2023
- 资助金额:
$ 9.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Distributed Machine Learning Methodology and System for Real-time Inference with Large-scale Point Clouds Towards Mobility Innovation
利用大规模点云进行实时推理的分布式机器学习方法和系统,迈向移动创新
- 批准号:
23H00464 - 财政年份:2023
- 资助金额:
$ 9.84万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Regularization and approximation: statistical inference, model selection, and large data
正则化和近似:统计推断、模型选择和大数据
- 批准号:
RGPIN-2021-02618 - 财政年份:2022
- 资助金额:
$ 9.84万 - 项目类别:
Discovery Grants Program - Individual
Learning and inference with large image corpora
使用大型图像语料库进行学习和推理
- 批准号:
RGPIN-2020-06848 - 财政年份:2022
- 资助金额:
$ 9.84万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for large-scale inference
大规模推理的统计方法
- 批准号:
RGPIN-2020-04739 - 财政年份:2022
- 资助金额:
$ 9.84万 - 项目类别:
Discovery Grants Program - Individual
Novel Data-Centric Methods for Inference and Prediction of Large-Scale Complex Systems
用于大规模复杂系统推理和预测的以数据为中心的新方法
- 批准号:
RGPIN-2018-03735 - 财政年份:2022
- 资助金额:
$ 9.84万 - 项目类别:
Discovery Grants Program - Individual
Robust and Efficient Statistical Inference in Large Scale Semi-Supervised Settings
大规模半监督环境中稳健且高效的统计推断
- 批准号:
2113768 - 财政年份:2021
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
Inference and computational methods for mixed models with large or complex data
具有大量或复杂数据的混合模型的推理和计算方法
- 批准号:
RGPIN-2016-05883 - 财政年份:2021
- 资助金额:
$ 9.84万 - 项目类别:
Discovery Grants Program - Individual