Statistical methods for large-scale inference
大规模推理的统计方法
基本信息
- 批准号:RGPIN-2020-04739
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the high-throughput technologies are increasingly adopted in practice, large-scale statistical inference is commonly conducted in many scientific research areas, including genetic, neuroimaging, astronomy, and many others. More specifically, in genome-wide association studies (GWAS) or neuroimaging studies, we need to conduct millions of hypothesis tests simultaneously, each of which concerns whether a single nucleotide polymorphism (SNP) or voxel is associated with a phenotype, respectively. The challenge of simultaneously testing many hypotheses is commonly referred to as the multiple testing problem. This proposal is mainly motivated by the realization that scientific investigations are rarely conducted in isolation, and there are typically relevant information and related experiments in the literature. For example, the summary statistics from a related disease can be highly informative for the inference of a target disease. Traditional multiple testing methods do not consider the relevant auxiliary information. In this proposal, we intend to develop powerful multiple testing methods by utilizing the auxiliary information while maintaining proper error control. The statistical methods developed can accelerate the progress of scientific discoveries by allowing scientists to fully utilize existing auxiliary information. We also plan to develop powerful methods to analyze GWAS by taking advantage of the correlations among test statistics. The applications of our methods can advance our understanding of the genetic basis of many human complex traits and diseases, including height, obesity, rheumatic diseases, developmental disorders, and many others.
随着高通量技术在实践中越来越多地被采用,大规模统计推断通常在许多科学研究领域中进行,包括遗传学、神经成像、天文学等。更具体地说,在全基因组关联研究(GWAS)或神经影像学研究中,我们需要同时进行数百万个假设检验,每个假设检验都涉及单核苷酸多态性(SNP)或体素是否分别与表型相关。同时测试许多假设的挑战通常被称为多重测试问题。 这一提议的主要动机是认识到科学调查很少孤立地进行,文献中通常有相关的信息和相关的实验。例如,来自相关疾病的汇总统计量对于目标疾病的推断可以是高度信息化的。传统的多重检验方法没有考虑相关的辅助信息。在这个建议中,我们打算开发强大的多种测试方法,利用辅助信息,同时保持适当的错误控制。所开发的统计方法可以通过允许科学家充分利用现有的辅助信息来加速科学发现的进展。我们还计划通过利用检验统计量之间的相关性来开发强大的方法来分析GWAS。我们的方法的应用可以促进我们对许多人类复杂特征和疾病的遗传基础的理解,包括身高,肥胖,风湿性疾病,发育障碍等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang, Kun其他文献
Finite-Time Stability and Stabilization for Continuous Systems with Additive Time-Varying Delays
- DOI:
10.1007/s00034-016-0443-z - 发表时间:
2017-07-01 - 期刊:
- 影响因子:2.3
- 作者:
Lin, Xiaogong;Liang, Kun;Nie, Jun - 通讯作者:
Nie, Jun
Platelet distribution width as an useful indicator of influenza severity in children.
- DOI:
10.1186/s12879-023-08890-w - 发表时间:
2024-01-02 - 期刊:
- 影响因子:3.7
- 作者:
Zou, Seyin;Mohtar, Siti Hasmah;Othman, Roshani;Hassan, Rodiah Mohd;Liang, Kun;Lei, Da;Xu, Bangming - 通讯作者:
Xu, Bangming
Overall Water Splitting with Room-Temperature Synthesized NiFe Oxyfluoride Nanoporous Films
- DOI:
10.1021/acscatal.7b02991 - 发表时间:
2017-12-01 - 期刊:
- 影响因子:12.9
- 作者:
Liang, Kun;Guo, Limin;Yang, Yang - 通讯作者:
Yang, Yang
Experimental assessment of alternative low global warming potential refrigerants for automotive air conditioners application
- DOI:
10.1016/j.csite.2020.100800 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:6.8
- 作者:
Chen, Xinwen;Liang, Kun;Jiang, Hanying - 通讯作者:
Jiang, Hanying
High-performance metal-oxide thin-film transistors based on inkjet-printed self-confined bilayer heterojunction channels
基于喷墨印刷自限域双层异质结通道的高性能金属氧化物薄膜晶体管
- DOI:
10.1039/c8tc06596a - 发表时间:
2019-05-28 - 期刊:
- 影响因子:6.4
- 作者:
Liang, Kun;Wang, Yan;Cui, Zheng - 通讯作者:
Cui, Zheng
Liang, Kun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang, Kun', 18)}}的其他基金
Statistical methods for large-scale inference
大规模推理的统计方法
- 批准号:
RGPIN-2020-04739 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for large-scale inference
大规模推理的统计方法
- 批准号:
RGPIN-2020-04739 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for high-throughput genomics
高通量基因组学的统计方法
- 批准号:
435666-2013 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for high-throughput genomics
高通量基因组学的统计方法
- 批准号:
435666-2013 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for high-throughput genomics
高通量基因组学的统计方法
- 批准号:
435666-2013 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for high-throughput genomics
高通量基因组学的统计方法
- 批准号:
435666-2013 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for high-throughput genomics
高通量基因组学的统计方法
- 批准号:
435666-2013 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for high-throughput genomics
高通量基因组学的统计方法
- 批准号:
435666-2013 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Efficient and Practical Privacy-Preserving Methods for Large-Scale Genomic Statistical Analysis
开发用于大规模基因组统计分析的高效实用的隐私保护方法
- 批准号:
23KJ0649 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Statistical methods for identifying pleiotropy between complex human traits
识别复杂人类特征之间多效性的统计方法
- 批准号:
10646535 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
CAREER: Statistical Models and Parallel-computing Methods for Analyzing Sparse and Large Single-cell Chromatin Interaction Datasets
职业:用于分析稀疏和大型单细胞染色质相互作用数据集的统计模型和并行计算方法
- 批准号:
2239350 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Statistical Methods for Improving Real-Time Public Health Surveillance and Integrated Outbreak Detection
改进实时公共卫生监测和综合疫情检测的统计方法
- 批准号:
10682401 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
- 批准号:
10662188 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Statistical methods for longitudinal integrated mechanistic modeling of multiview data
多视图数据纵向综合机制建模的统计方法
- 批准号:
10445698 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Improve Statistical Methods for Profiling of Healthcare Providers
改进医疗保健提供者概况分析的统计方法
- 批准号:
10443230 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
CORE 1/2: INIA Stress and Chronic Alcohol Interactions: Computational and Statistical Analysis Core (CSAC)
CORE 1/2:INIA 压力和慢性酒精相互作用:计算和统计分析核心 (CSAC)
- 批准号:
10411629 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
- 批准号:
10391800 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Statistical methods for longitudinal integrated mechanistic modeling of multiview data
多视图数据纵向综合机制建模的统计方法
- 批准号:
10685565 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别: