Research Experience in Numerical Methods for Partial Differential Equations with Singularities

奇异性偏微分方程数值方法的研究体会

基本信息

  • 批准号:
    0713743
  • 负责人:
  • 金额:
    $ 4.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

Computational methods are used in almost any area in which computers are used. Improved numerical and computational methods are one of the main venues to improve the speed of modern computer applications. The "Finite Element Method" is a very popular numerical method that is used by engineers, physicists, biologists, meteorologists, in financial mathematics, and in many other areas. More concretely, the finite element method is used in the study of heat propagation, radar detection, medical imaging, structural analysis of buildings, design of aircraft wings, and in many other practical problems.The first step in the use of the Finite Element Method is to fictitiously divide the domain to be studied (the domain occupied by a building, aircraft, body to be imaged) into many small triangles, parallelepipeds, or tetrahedra. This is to a large extent an elementary task, but very time-consuming. Moreover, additional care has to be paid close to the vertices and the edges of the domain. Without this additional extra care in the way we divide our domain, obtaining the desired precision in calculations would take much longer. For example, some recent results in which the Principal Investigator is also involved lead to the estimate that, for a precision of three exact digits, a careful division procedure can decrease the time of calculation by one million times or more. For a precision of five exact digits, the estimated improvement is one trillion times or more.While the mathematical techniques to decide the shape of the improved divisions of the computational domain are quite sophisticated (anisotropic mesh refinement, elliptic partial differential equations, non-compact manifolds, functional analysis), once such a division algorithm has been formulated, it can be taught to a good beginning undergraduate student. The main purpose of this proposal is to train undergraduate and graduate students in state-of-the-art Finite Element Method techniques (including, but not limited to, anisotropic mesh refinement, a priori and adaptive mesh refinement, meshless methods, and multigrid methods for solving the resulting linear systems). The more advanced the students, the more opportunities they will be given to learn about the inner workings of these methods. Each of the students involved will be expected to produce original research at their corresponding level of mathematical training. The resulting training of the students will provide the necessary numerical experience needed by the students, by the Principal Investigator, and by others to conduct cutting-edge research in the future. Another important quality of the Finite Element Method is that it can be taught to students with a very wide scale of mathematical backgrounds and hence sophistication. As such, by training more people with various backgrounds to use such methods and to do research on them, it is expected, based on previous experience, that a wider range of students, including underrepresented groups, will be attracted to mathematical research.
计算方法几乎用于任何使用计算机的领域。 改进的数值和计算方法是提高现代计算机应用速度的主要途径之一。 “有限元法”是一种非常流行的数值方法,被工程师、物理学家、生物学家、气象学家、金融数学和许多其他领域所使用。 更具体地说,有限元法被用于热传播、雷达探测、医学成像、建筑物结构分析、飞机机翼设计等许多实际问题的研究。使用有限元法的第一步是虚拟地划分要研究的区域(建筑物、飞机、物体所占据的区域)分成许多小三角形、平行六面体或四面体。 这在很大程度上是一项基本任务,但非常耗时。 此外,在靠近域的顶点和边的地方必须额外小心。 如果我们在划分域的方式上没有这种额外的注意,获得所需的计算精度将需要更长的时间。 例如,最近一些主要研究者也参与其中的结果导致估计,对于三位精确数字的精度,仔细的除法程序可以将计算时间减少一百万倍或更多。 对于五位精确数字的精度,估计改进是一万亿倍或更多。虽然决定计算域的改进划分的形状的数学技术是相当复杂的(各向异性网格细化,椭圆偏微分方程,非紧流形,泛函分析),一旦这样的划分算法已经制定,它可以教一个良好的开端本科生。 该提案的主要目的是培养本科生和研究生掌握最先进的有限元方法技术(包括但不限于各向异性网格细化、先验和自适应网格细化、无网格方法和多重网格方法,用于求解所得线性系统)。 学生越先进,他们将有更多的机会了解这些方法的内部工作原理。 每个参与的学生都将被期望在相应的数学训练水平上进行原创性研究。 由此产生的学生培训将提供学生,主要研究者和其他人在未来进行尖端研究所需的必要数值经验。 有限元法的另一个重要特性是,它可以教授给具有非常广泛的数学背景的学生,因此是复杂的。 因此,通过培训更多具有不同背景的人使用这些方法并对其进行研究,根据以往的经验,预计将吸引更广泛的学生,包括代表性不足的群体,进行数学研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victor Nistor其他文献

Fredholm Criteria for Pseudo differential Operators and induced Representations of Groupoid Algebras
伪微分算子的 Fredholm 准则和群群代数的诱导表示
Fredholm Conditions on Non-compact Manifolds: Theory and Examples
非紧流形上的 Fredholm 条件:理论与示例
Boundary value problems and layer potentials on manifolds with cylindrical ends
  • DOI:
    10.1007/s10587-007-0118-9
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Marius Mitrea;Victor Nistor
  • 通讯作者:
    Victor Nistor
Sobolev spaces and $$\nabla $$ -differential operators on manifolds I: basic properties and weighted spaces
The Stokes operator on manifolds with cylindrical ends
具有柱形端的流形上的斯托克斯算子
  • DOI:
    10.1016/j.jde.2024.06.017
  • 发表时间:
    2024-10-25
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Mirela Kohr;Victor Nistor;Wolfgang L. Wendland
  • 通讯作者:
    Wolfgang L. Wendland

Victor Nistor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Victor Nistor', 18)}}的其他基金

Numerical treatment of singularities and the Generalized Finite Element Method: theory, algorithms, and applications
奇点的数值处理和广义有限元方法:理论、算法和应用
  • 批准号:
    1016556
  • 财政年份:
    2010
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Applications of Operator Algebras and Index Theory to Analysis on Singular Spaces
算子代数和指数论在奇异空间分析中的应用
  • 批准号:
    0555831
  • 财政年份:
    2006
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Global Methods in the Analysis on Singular Spaces and Partial Differential Equations
奇异空间和偏微分方程分析中的全局方法
  • 批准号:
    0200808
  • 财政年份:
    2002
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Index Theorems, Residues, Eta Invariants, and Foliations
美法合作研究:指数定理、留数、Eta 不变量和叶状结构
  • 批准号:
    9981251
  • 财政年份:
    2000
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Analysis on Singular Spaces
奇异空间分析
  • 批准号:
    9971981
  • 财政年份:
    1999
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
NSF Young Investigator
NSF 青年研究员
  • 批准号:
    9457859
  • 财政年份:
    1994
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Index Theory and Cyclic Cohomology
数学科学:指数论和循环上同调
  • 批准号:
    9205542
  • 财政年份:
    1992
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant

相似海外基金

Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Studentship
Museum Visitor Experience and the Responsible Use of AI to Communicate Colonial Collections
博物馆参观者体验和负责任地使用人工智能来交流殖民地收藏品
  • 批准号:
    AH/Z505547/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Research Grant
The Smart Tourism Experience: A Tourist-Centric Conceptualization and Empirical Investigation
智慧旅游体验:以游客为中心的概念化与实证研究
  • 批准号:
    24K15533
  • 财政年份:
    2024
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Examining the Effect of Childhood Individual and Contextual Risk Factors on Violence Use and Experience at Early Adulthood (18-21 years)
检查童年个体和背景风险因素对成年早期(18-21 岁)暴力使用和经历的影响
  • 批准号:
    2901103
  • 财政年份:
    2024
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Studentship
Trust in forensic science evidence in the criminal justice system: The experience of marginalised groups
刑事司法系统中对法医科学证据的信任:边缘群体的经历
  • 批准号:
    ES/Y010639/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Research Grant
REU Site: Research Experience in Functional Materials for Undergraduates in Chemistry at the University of South Florida
REU 网站:南佛罗里达大学化学专业本科生功能材料研究经验
  • 批准号:
    2349085
  • 财政年份:
    2024
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    2349230
  • 财政年份:
    2024
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
REU Site: ASL-English Bilingual Cognitive and Educational Neuroscience Training and Research Experience (ASL-English Bilingual CENTRE)
REU网站:ASL-英语双语认知和教育神经科学培训和研究经验(ASL-英语双语中心)
  • 批准号:
    2349454
  • 财政年份:
    2024
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Research Experience for Undergraduates in Digital Accessibility
数字无障碍本科生研究经验
  • 批准号:
    2426230
  • 财政年份:
    2024
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 4.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了