Global Methods in the Analysis on Singular Spaces and Partial Differential Equations
奇异空间和偏微分方程分析中的全局方法
基本信息
- 批准号:0200808
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2005-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractNistorThis project is devoted to the analysis and spectral theory of differential operators on non-compact manifolds. The investigator is especially interested in generalizing the classical results of elliptic theory for compact manifolds, including index theory. Little can be said about all non-compact manifolds in general, but results of Bismut, Beunning, Cordes, Mazzeo, Melrose, Meuller, Shubin, and others have singledout a class of manifolds that is more amenable to study: the class of manifolds with a uniform structure at infinity. The local theory (regularity, local existence) for these manifolds is the same as for compact manifolds, so our methods will necessarily be global. Thus, in addition to the methods of Partial differential equations and Differential geometry used by the above mentioned authors, methods from Operator algebras have come to play an increasingly important role in the study of non-compact manifolds witha uniform structure at infinity, as is seen from the work of Connes, V.F.R. Jones, Lauter, Monthubert, Skandalis, Taylor, and the investigator.Manifolds with a uniform structure at infinity appear naturally in Scattering theory, Differential geometry, Representation theory, Mathematical physics, and certain problems of Applied mathematics. The results of the proposed research will have, in the long run, applications to all these domains. The main methods that are proposed belong to Analysis, especially Partial differential equations, Operator algebras, Spectral theory, and K-theory. A main technical tool will be provided by algebras generated by differentialoperators on non-compact manifolds with a uniform structure at infinity. By using Sobolev spaces, one can reduce many of our basic questions to questions about algebras of bounded operators. A novel feature of this proposal is the study of boundary value problems for manifolds with a uniform structure at infinity that have Lipschitz boundaries, as in the work of Mitrea and Taylor on such compact domains.
本项目致力于非紧流形上微分算子的分析和谱理论。研究者特别感兴趣的是推广椭圆理论的经典结果的紧流形,包括指数理论。很少可以说所有的非紧流形一般,但结果的Bismut,Beunning,科德斯,Mazzeo,梅尔罗斯,Meuller,舒宾,和其他人已经挑选出一类流形,是更适合研究:一类流形的一致结构在无穷远。这些流形的局部理论(正则性,局部存在性)与紧致流形相同,所以我们的方法必然是全局的。因此,除了上述作者所使用的偏微分方程和微分几何的方法外,算子代数的方法在研究无穷远处具有一致结构的非紧流形中也起着越来越重要的作用,这可以从Connes,V.F.R.琼斯,劳特,蒙休伯特,Skandalis,泰勒,和调查。流形与一致的结构在无穷大自然出现在散射理论,微分几何,表示论,数学物理,和某些问题的应用数学。从长远来看,拟议研究的结果将应用于所有这些领域。提出的主要方法属于分析,特别是偏微分方程,算子代数,谱理论和K-理论。在无穷远处具有一致结构的非紧流形上的微分算子生成的代数将提供一个主要的技术工具。通过使用Sobolev空间,人们可以将我们的许多基本问题简化为关于有界算子代数的问题。一个新的特点,这一建议是研究边界值问题的流形具有一致的结构在无穷大的Lipschitz边界,在工作中的Mitrea和泰勒等紧凑的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Nistor其他文献
Fredholm Criteria for Pseudo differential Operators and induced Representations of Groupoid Algebras
伪微分算子的 Fredholm 准则和群群代数的诱导表示
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Catarina Carvalho;Victor Nistor;Yu Qiao - 通讯作者:
Yu Qiao
Fredholm Conditions on Non-compact Manifolds: Theory and Examples
非紧流形上的 Fredholm 条件:理论与示例
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Catarina Carvalho;Victor Nistor;Yu Qiao - 通讯作者:
Yu Qiao
Boundary value problems and layer potentials on manifolds with cylindrical ends
- DOI:
10.1007/s10587-007-0118-9 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:0.500
- 作者:
Marius Mitrea;Victor Nistor - 通讯作者:
Victor Nistor
Sobolev spaces and $$\nabla $$ -differential operators on manifolds I: basic properties and weighted spaces
- DOI:
10.1007/s10455-022-09824-6 - 发表时间:
2022-01-28 - 期刊:
- 影响因子:0.700
- 作者:
Mirela Kohr;Victor Nistor - 通讯作者:
Victor Nistor
The Stokes operator on manifolds with cylindrical ends
具有柱形端的流形上的斯托克斯算子
- DOI:
10.1016/j.jde.2024.06.017 - 发表时间:
2024-10-25 - 期刊:
- 影响因子:2.300
- 作者:
Mirela Kohr;Victor Nistor;Wolfgang L. Wendland - 通讯作者:
Wolfgang L. Wendland
Victor Nistor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Nistor', 18)}}的其他基金
Numerical treatment of singularities and the Generalized Finite Element Method: theory, algorithms, and applications
奇点的数值处理和广义有限元方法:理论、算法和应用
- 批准号:
1016556 - 财政年份:2010
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Research Experience in Numerical Methods for Partial Differential Equations with Singularities
奇异性偏微分方程数值方法的研究体会
- 批准号:
0713743 - 财政年份:2007
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Applications of Operator Algebras and Index Theory to Analysis on Singular Spaces
算子代数和指数论在奇异空间分析中的应用
- 批准号:
0555831 - 财政年份:2006
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Index Theorems, Residues, Eta Invariants, and Foliations
美法合作研究:指数定理、留数、Eta 不变量和叶状结构
- 批准号:
9981251 - 财政年份:2000
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Mathematical Sciences: Index Theory and Cyclic Cohomology
数学科学:指数论和循环上同调
- 批准号:
9205542 - 财政年份:1992
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Global analysis of mathematical models with conservation law by semi-analytic methods using the elliptic functions
使用椭圆函数的半解析方法对具有守恒定律的数学模型进行全局分析
- 批准号:
22K13962 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on the analysis methods and the development of global flow of funds statistics
全球资金流量统计分析方法及发展研究
- 批准号:
20K01701 - 财政年份:2020
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Validated Computational Methods in Global Analysis and Applications to Celestial Mechanics
全局分析中经过验证的计算方法及其在天体力学中的应用
- 批准号:
1813501 - 财政年份:2018
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Development of EFL Teaching Methods and Materials to Foster Global Leaders Through a Comparative Analysis with British Counterparts
通过与英国同行的比较分析开发 EFL 教学方法和教材以培养全球领导者
- 批准号:
15K02702 - 财政年份:2015
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of biomarkers and novel therapeutic targets for malignant bone and soft tissue tumors using the methods of global expression analysis
利用全局表达分析方法开发恶性骨和软组织肿瘤的生物标志物和新的治疗靶点
- 批准号:
26293342 - 财政年份:2014
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference on Microlocal Methods in Mathematical Physics and Global Analysis
数学物理和全局分析中的微局域方法会议
- 批准号:
1067924 - 财政年份:2011
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Development and application of methods for complexity reduction, metamodelling and optimal experimental design based on global sensitivity analysis
基于全局敏感性分析的复杂性降低、元建模和优化实验设计方法的开发和应用
- 批准号:
EP/H03126X/1 - 财政年份:2010
- 资助金额:
$ 13万 - 项目类别:
Research Grant
Search for novel biomarkers and therapeutic targets of malignant bone and soft tissue tumors/sarcomas using the methods of global expression analysis
利用全局表达分析方法寻找恶性骨和软组织肿瘤/肉瘤的新生物标志物和治疗靶点
- 批准号:
22390296 - 财政年份:2010
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of the global structure of chaotic dynamical systems by topological and computational methods
用拓扑和计算方法分析混沌动力系统的全局结构
- 批准号:
21540231 - 财政年份:2009
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing methods and bioinformatics tools for the global analysis of accessible regions in chromatin
开发用于染色质可及区域全局分析的方法和生物信息学工具
- 批准号:
BB/F02441X/1 - 财政年份:2008
- 资助金额:
$ 13万 - 项目类别:
Research Grant