Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations

电磁学的正向和逆向问题:新算法及其实现

基本信息

  • 批准号:
    RGPIN-2020-05399
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Computational electromagnetics (CEM) is foundational discipline that combines electrical engineering, mathematics, and computer science. It enables construction of methods and computational tools for electromagnetic analysis of microelectronic circuits, novel materials, scattering and radiation systems, wireless links in both indoors and cell level communication systems and other applications. Such analysis is critical for creation of new products and services providing higher levels of connectivity, security, and healthcare. Proposed program addresses current challenges, develops new algorithms, and explores important relationships between the methods in the forward and inverse problems of CEM. Construction of novel fast algorithms that break exponential growth in required data with the size of problem in CEM (a.k.a. 'curse of dimensionality') is one theme of the program. Such algorithms will make possible to solve more sophisticated and larger-scale problems of electromagnetic analysis than was possible previously. Development of new integral equations of electromagnetics and numerical schemes for their solution that can address fundamental challenges such as low-frequency instability, the presence of spurious resonances, oversampling breakdown and others, which have been plaguing computational software based on the classical integral equations of electromagnetics. The proposed methods will significantly enhance existing academic and commercial computational software packages and lead to new generation of electromagnetic solvers with drastically increased robustness and capacity. Elimination of ill-posedness (non-uniqueness of solution) in the inverse problems of microwave tomography (MWT) is another theme of the research program. Such ill-posedness for decades has been preventing microwaves from being used as main stream imaging modality alongside X-rays, ultrasounds, and MRI. We will exploit recently emerging prototypes of biology inspired antenna systems which have been demonstrated to possess unprecedented directivity. These new imaging system promises to eliminate ill-posedness featured in existing systems that prevents them from achieving desirable resolution. Proposed new MWT approach promises to find broad applications in radiology, non-destructive material testing of mechanical systems, security screening, remote sensing, and other areas.
计算电磁学(CEM)是一门结合了电气工程、数学和计算机科学的基础学科。它可以构建用于微电子电路,新型材料,散射和辐射系统,室内和单元级通信系统和其他应用中的无线链路的电磁分析的方法和计算工具。这种分析对于创建提供更高级别的连接性、安全性和医疗保健的新产品和服务至关重要。提出的方案解决当前的挑战,开发新的算法,并探讨了重要的关系,在CEM的正问题和反问题的方法。 构建新的快速算法,打破所需数据的指数增长与CEM中问题的大小(a.k.a.“维度的诅咒”)是节目的主题之一。这样的算法将有可能解决比以前更复杂和更大规模的电磁分析问题。 开发新的电磁学积分方程及其数值求解方案,以解决低频不稳定性、寄生谐振的存在、过采样击穿等基本挑战,这些挑战一直困扰着基于经典电磁学积分方程的计算软件。所提出的方法将显着增强现有的学术和商业计算软件包,并导致新一代的电磁解算器,大大提高了鲁棒性和容量。消除微波层析成像(MWT)逆问题中的不适定性(解的非唯一性)是研究计划的另一个主题。几十年来,这种不适定性一直阻碍着微波与X射线、超声和MRI一起作为主流成像方式。我们将利用最近出现的原型生物启发的天线系统已被证明具有前所未有的方向性。这些新的成像系统有望消除现有系统中的不适定性,这使得它们无法实现理想的分辨率。提出的新MWT方法有望在放射学、机械系统的非破坏性材料测试、安全筛选、遥感和其他领域找到广泛的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Okhmatovski, Vladimir其他文献

H-Matrix Accelerated Direct Matrix Solver using Chebyshev-based Nyström Boundary Integral Equation Method
使用基于切比雪夫的 Nyström 边界积分方程方法的 H 矩阵加速直接矩阵求解器
Surface-Volume-Surface EFIE Formulation for Fast Direct Solution of Scattering Problems on General 3-D Composite Metal-Dielectric Objects

Okhmatovski, Vladimir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Okhmatovski, Vladimir', 18)}}的其他基金

Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Full wave electromagnetic modelling of lightning discharge through complex power systems
通过复杂电力系统进行雷电放电的全波电磁建模
  • 批准号:
    505354-2016
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Collaborative Research and Development Grants
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Full wave electromagnetic modelling of lightning discharge through complex power systems
通过复杂电力系统进行雷电放电的全波电磁建模
  • 批准号:
    505354-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Collaborative Research and Development Grants
Novel methodologies for electromagnetic characterization of complex power cable systems situated in realistic environment
现实环境中复杂电力电缆系统电磁特性的新方法
  • 批准号:
    474958-2014
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Collaborative Research and Development Grants
New Frontiers in Computational Electromagnetics: Towards High-Accuracy Solutions and Reliable Microwave Imaging
计算电磁学的新前沿:迈向高精度解决方案和可靠的微波成像
  • 批准号:
    RGPIN-2015-05144
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Full wave electromagnetic modelling of lightning discharge through complex power systems
通过复杂电力系统进行雷电放电的全波电磁建模
  • 批准号:
    505354-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Collaborative Research and Development Grants
Novel methodologies for electromagnetic characterization of complex power cable systems situated in realistic environment
现实环境中复杂电力电缆系统电磁特性的新方法
  • 批准号:
    474958-2014
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Collaborative Research and Development Grants
New Frontiers in Computational Electromagnetics: Towards High-Accuracy Solutions and Reliable Microwave Imaging
计算电磁学的新前沿:迈向高精度解决方案和可靠的微波成像
  • 批准号:
    RGPIN-2015-05144
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Full wave electromagnetic modelling of lightning discharge through complex power systems
通过复杂电力系统进行雷电放电的全波电磁建模
  • 批准号:
    505354-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

新型简化Inverse Lax-Wendroff方法的发展与应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
  • 批准号:
    11801143
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
  • 批准号:
    2306411
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
OAC Core: The Best of Both Worlds: Deep Neural Operators as Preconditioners for Physics-Based Forward and Inverse Problems
OAC 核心:两全其美:深度神经算子作为基于物理的正向和逆向问题的预处理器
  • 批准号:
    2313033
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
OAC Core: Toward a Rigorous and Reliable Scientific Deep Learning Framework for Forward, Inverse, and UQ Problems
OAC 核心:针对正向、逆向和 UQ 问题建立严格可靠的科学深度学习框架
  • 批准号:
    2212442
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
  • 批准号:
    RGPIN-2020-04568
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
  • 批准号:
    RGPIN-2020-04568
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
  • 批准号:
    RGPIN-2020-04568
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
  • 批准号:
    DGECR-2020-00334
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement
CAREER: Stochastic Forward and Inverse Problems Involving Dynamical Systems
职业:涉及动力系统的随机正向和逆向问题
  • 批准号:
    1847144
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了