Collaborative Research: Algorithms for Learning Regularizations of Inverse Problems with High Data Heterogeneity
合作研究:高数据异质性逆问题的学习正则化算法
基本信息
- 批准号:2152960
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In today's era of big data, massive amount of data are being collected in various acquisition settings and different formats from diverse sources. Such high heterogeneity has posed serious challenges in many aspects of analysis, inference, and computation involving big data. This project aims at developing novel modeling and computational methods, including highly structured deep neural networks and novel training algorithms, to effectively address this challenging issue. Results of this project will provide powerful computational tools to a broad range of important fields involving large heterogenous data sets, such as signal processing, medical imaging, computer vision, and bioinformatics.The research in this project includes three major components: (1) Development of learnable optimization algorithms (LOAs) which induce highly efficient schemes for solving nonconvex and nonsmooth inverse problems. These LOAs effectively integrate residual learning architectures into exact and inexact descent-type algorithms, which not only have outstanding efficiency compared to the state-of-the-art methods in practice but are also supported by rigorous convergence guarantees in theory; (2) Novel training strategies based on bi-level optimization to learn the parameters of the LOAs, which can explore the underlying common features across a variety of tasks in heterogeneous data sets as well as the task-specific features; and (3) Efficient methods to solve the bi-level optimization problems of parameter training with comprehensive computation and sampling complexity analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当今的大数据时代,大量的数据正在以各种采集设置和来自不同来源的不同格式收集。如此高的异质性在涉及大数据的分析、推理和计算的许多方面都提出了严峻的挑战。该项目旨在开发新的建模和计算方法,包括高度结构化的深度神经网络和新的训练算法,以有效地解决这一具有挑战性的问题。本项目的研究成果将为信号处理、医学成像、计算机视觉和生物信息学等涉及大量异质数据集的重要领域提供强有力的计算工具。本项目的研究包括三个主要部分:(1)开发可学习的优化算法(LOAs),它可以诱导高效的非凸和非光滑反问题求解方案。这些LOA有效地将残差学习结构集成到精确和不精确下降型算法中,不仅在实践中具有比最先进的方法更高的效率,而且在理论上也得到了严格的收敛保证;(2)基于双层优化学习LOA参数的新型训练策略,它可以探索跨异构数据集中的各种任务的潜在共同特征以及特定于任务的特征;(3)求解双-该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lyapunov-Net: A Deep Neural Network Architecture for Lyapunov Function Approximation
- DOI:10.1109/cdc51059.2022.9993006
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Nathan Gaby;Fumin Zhang;X. Ye
- 通讯作者:Nathan Gaby;Fumin Zhang;X. Ye
A Learnable Variational Model for Joint Multimodal MRI Reconstruction and Synthesis
- DOI:10.48550/arxiv.2204.03804
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Wanyu Bian;Qingchao Zhang;X. Ye;Yunmei Chen
- 通讯作者:Wanyu Bian;Qingchao Zhang;X. Ye;Yunmei Chen
Learned Alternating Minimization Algorithm for Dual-domain Sparse-View CT Reconstruction
- DOI:10.48550/arxiv.2306.02644
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Chi-Jiao Ding;Qingchao Zhang;Ge Wang;X. Ye;Yunmei Chen
- 通讯作者:Chi-Jiao Ding;Qingchao Zhang;Ge Wang;X. Ye;Yunmei Chen
Low-rank Matrix Recovery With Unknown Correspondence
- DOI:
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Zhiwei Tang;Tsung-Hui Chang;X. Ye;H. Zha
- 通讯作者:Zhiwei Tang;Tsung-Hui Chang;X. Ye;H. Zha
High-Dimensional Optimal Density Control with Wasserstein Metric Matching
- DOI:10.1109/cdc49753.2023.10384042
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Shaojun Ma;Mengxue Hou;X. Ye;Haomin Zhou
- 通讯作者:Shaojun Ma;Mengxue Hou;X. Ye;Haomin Zhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaojing Ye其他文献
LAMA-Net: A Convergent Network Architecture for Dual-Domain Reconstruction
- DOI:
10.1007/s10851-025-01249-7 - 发表时间:
2025-05-13 - 期刊:
- 影响因子:1.500
- 作者:
Chi Ding;Qingchao Zhang;Ge Wang;Xiaojing Ye;Yunmei Chen - 通讯作者:
Yunmei Chen
“Returning beyond cancer”—a journey of professional reinvention for nurses
- DOI:
10.1007/s00520-025-09467-w - 发表时间:
2025-04-25 - 期刊:
- 影响因子:3.000
- 作者:
Qingyi Xue;Wenjing Xu;Xulu Wang;Xiaojing Ye;Wanting Hong;Qianqian Chen;Xin Lu;Xiaolei Wang;Chunmei Zhang - 通讯作者:
Chunmei Zhang
GENE THERAPY OF SYSTEMIC LUPUS ERYTHEMATOSUS IN NZB/W F1 MICE
NZB/W F1 小鼠系统性红斑狼疮的基因治疗
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Xiaojing Ye - 通讯作者:
Xiaojing Ye
Plexin-A1 expression in the inhibitory neurons of infralimbic cortex regulates the specificity of fear memory in male mice
边缘下皮层抑制性神经元中 Plexin-A1 的表达调节雄性小鼠恐惧记忆的特异性
- DOI:
10.1038/s41386-021-01177-1 - 发表时间:
2021-09 - 期刊:
- 影响因子:7.6
- 作者:
Xin Cheng;Yan Zhao;Shuyu Zheng;Panwu Zhao;Jin-lin Zou;Wei-Jye Lin;Wen Wu;Xiaojing Ye - 通讯作者:
Xiaojing Ye
Neural Control of Parametric Solutions for High-Dimensional Evolution PDEs
高维演化偏微分方程参数解的神经控制
- DOI:
10.1137/23m1549870 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nathan Gaby;Xiaojing Ye;Haomin Zhou - 通讯作者:
Haomin Zhou
Xiaojing Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaojing Ye', 18)}}的其他基金
Collaborative Research: Theory, computation and applications of parameterized Wasserstein gradient and Hamiltonian flows
合作研究:参数化 Wasserstein 梯度和哈密顿流的理论、计算和应用
- 批准号:
2307466 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
ATD: Algorithms for Point Processes on Networks for Threat Detection
ATD:用于威胁检测的网络点处理算法
- 批准号:
1925263 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: Prediction, Optimization and Control for Information Propagation on Networks: A Differential Equation and Mass Transportation Based Approach
合作研究:网络信息传播的预测、优化和控制:基于微分方程和大众运输的方法
- 批准号:
1620342 - 财政年份:2016
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
- 批准号:
2423105 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
- 批准号:
2331781 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306438 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant